Energy audit 2023

MAY 16

KHALSA COLLEGE AMRITSAR Authored by: NAVJYOT SINGH

ENERGY MANAGEMENT

The fundamental goal of energy management is to produce goods & provide services with the least cost & least environmental effects. Energy is one of the major inputs for the economic development of any country. The fundamental goal of energy management is to produce goods & provide services with the least cost & least environmental effects.

"The strategy of adjusting & optimizing energy, using systems & procedures so as to reduce energy requirements per unit of output while holding constant or reducing total cost of producing the output from these systems"

The objective of energy management is to achieve & maintain optimum energy procurement & utilization, throughout the organization and:

To minimize energy cost / waste without affecting production & quality.

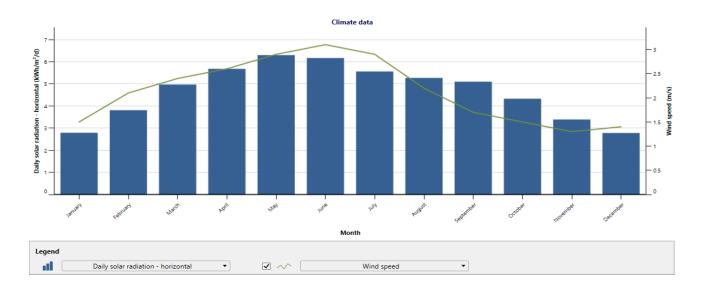
To minimize environmental effects.

ELECTRICAL ENERGY

Energy resources utilized by all the departments, support services & the administrative buildings of *"KHALSA COLLEGE AMRITSAR"* including electricity, solar energy & liquid fuels as Diesel. Major use of energy is at office, canteen, hostel & laboratories, for electricity, cooking & workshop instruments. Electricity is supplied to the college by Punjab Electricity Board & the tariff rate is 6.63 / kwh. The communication process for awareness in relation to energy conservation is found to be inadequate.

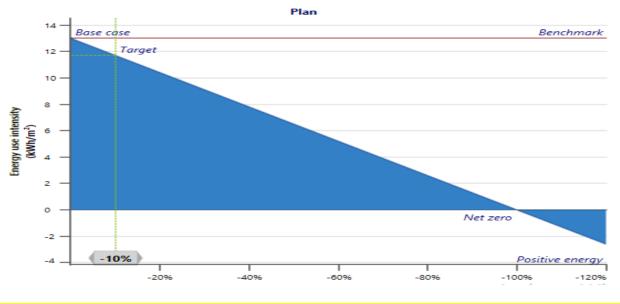
- Regular monitoring of equipment and immediate rectification of any problems.
- Conduct more save energy awareness programs for students & staff.
- Observe a power saving day every year.
- Automatic power switch off system should be introduced.
- Use of APFC panel for 3-Phase pumps.

ABOUT THE LOCATION


	FACILITY INFORMATION	
FACALITY TYPE	COMMERCIAL / INSTITUTIONAL	
TYPE	EDUCATION	
PREPARED FOR	KHALSA COLLEGE AMRITSAR	
PREPARED BY	ECO PARYAVARAN	A STATISTICS IN THE DATE OF A STATE OF A STA
FACILITY NAME	KHALSA COLLEGE	
CITY	AMRITSAR	- and
STATE	PUNJAB	

CLIMATE DATA ACCORDING TO LOCTION

			Unit	Climate data locati	on	Faci	ity location	So	urce
Latitude				31.5			31.6		
Longitude				74.4			74.8		
Climate zone					1B-Very hot-D)		Ground+NASA Ground - Ma	
Elevation			m	217			232		
Heating design	n temperature		*с	5				Ground	
Cooling desigr	n temperature		*c	41.8				Ground	
Earth tempera	iture amplitude		*c	25.1				NASA	
	Air	Relative		Daily solar radiation	Atmospheric	Wind	Earth	Heating degree-days	Cooing degree-days
Month	temperature	humidity	Precipitation	horizontal	presure	speed	temperature	18*C	10*C
	*C	%	mm	kWh/m2/d	kPa	m/s	OC	*C-d	*C-d
January	12.8	70.90%	17.98	2.79	99.2	1.5	11.3	161	87
February	15.4	64.10%	32.2	3.81	99.0	2.1	14.7	73	151
March	20.5	58.40%	27.28	4.97	98,7	2.4	21.4	0	326
Apri	26.8	45.20%	17.1	5.68	98.2	2.5	28.9	0	504
May	31.2	39.50%	16.12	6.30	97.8	2.9	36.2	0	657
June	33.9	50.50%	55.20	6.17	97.3	3.1	39.4	0	717
Juy	31.5	72.60%	152.21	5.56	97.4	2.9	36.6	0	667
August	30.7	74.70%	141.67	5.27	97.6	2.2	33.4	0	642
September	29.7	70.50%	61.2	5.1	98.0	1.7	30.9	0	591
October	25.6	61.20%	13.02	4.33	98.6	1.5	24.9	0	484
November	19.5	62.30%	5.4	3.39	99.1	1.3	18.4	0	285
December	14.2	67.90%	12.4	2.78	99.3	1.4	13.1	118	130
Annual	24.4	61.60%	551.78	4.68	98.4	2.1	258	352	5,240
Source	Ground	Ground	NASA	Ground	Ground	Ground	NASA	Ground	Ground
Measured at					m	10	0		



Graphical Representation of Solar Radiation & Wind Speed Month Wise

BENCHMARK- COMMERCIA	L / INSTITUTIONAL
FACALITY SIZE	1,20
ENERGY USE INTENSITY	
BENCHMARK	13 Kwh/m ²
Minimum (Typical)	11 Kwh/m ²
Maximum (Typical)	12
Base case	13
Reference year	2022
SET TARGET	
Year	2023
Target	-10%
Proposed case	11.7 Kwh/1
Facility – plan	Annual
Energy consumption	kwh
Base case	1560000
Proposed case	1404000
Energy saved	156000 kwh

SOLAR WATER HEATING SYSTEM

Solar water heaters -- sometimes called solar domestic hot water systems -- can be a costeffective way to generate hot water. They can be used in any climate, and the fuel they use -sunshine -- is free. There are solar water boilers in the facility. Following is the comparison of solar heater with electricity.

Calculations for electrical water heating system

		Base case		Proposed case		Energy save
Load type - calculator	[Other		•)
Hot water use	L/d 🔻	2,000		2,000)
emperature .	°C 🔻	70		70)
Supply temperature method	(Formula		•)
Vater temperature - minimum	°C		20.3			
Vater temperature - maximum	°C		27.7			
Operating hours	h/d ▼	7		7)
Heat recovery efficiency	%)
✓ Percent of month used						
	January	100%		100%		
	February	100%		100%		
	March	70%		70%		
	April	50%		50%		
	May	5%		5%		
	June	2%		2%		
	July	2%		2%		
	August	5%		5%		
	September	30%		30%		
	October	35%		35%		
	November	45%		45%		
	December	85%		85%		
					_	
ncremental O&M savings	INR		_			
leating system		Water heater	•	Water heater	•	
eating	kWh 🔻	5,167		5,167		0
						0%

From the above data we observe that 2000 L of hot water is used, which is different every month. According to the usage 5,167 Kw/h of electricity is used every month. The current tariff rate is Rs. 6.63, so the approximate cost would be RS.34257/ month.

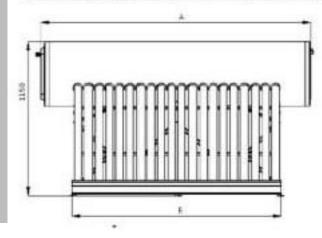
Calculations for solar water heating system

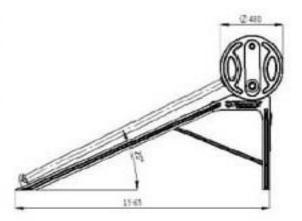
-Solar water heater -

-Solar water heater			
Load characteristics			
Hot water	+ -	Hot water	•
Temperature	°C ▼		
Heating	kWh 🔻		
Resource assessment			
Solar tracking mode		Fixed	•
Slope	•	25	
Azimuth	•	0	
Show data			
olar water heater			
Туре		Glazed	•
Manufacturer			
Model	,		
Gross area per solar collector	m² •	3.5	<u></u>
Aperture area per solar collector	m²	3.5	
Fr (tau alpha) coefficient	au 200	0.72	
Fr UL coefficient	(W/m ²)/°C ▼ (W/m ²)/°C ² ▼	0.02	
Temperature coefficient for Fr UL	(W/m²)/°C² ▼		
Number of collectors - suggested Number of collectors		4	
Solar collector area	m²	14	
Capacity	kW	9.8	
Miscellaneous losses	%	5.0	
Balance of system & miscellaneous			
Storage	yes/no	Yes	•
Storage capacity / solar collector area	L/m² ▼	85.76	
Storage capacity	L	1,201	
Heat exchanger	yes/no	No	•
Miscellaneous losses	%	1%	
Pump power / solar collector area	W/m ² v	0	
Electricity rate	INR/kWh	6.63	
Initial costs	INR 🔻	2,00,000	
O&M costs (savings)	INR		
	· · · · · · · · · · · · · · · · · · ·		

Summary

From the above data we absorb that there is no solar water boiler is installed in the facility. And as per our recommendations 60% of water boilers (each having the capacity of 300 LPD) should be replaced with solar boilers.


Solar boiler details are as follows



Technical specification of 300L solar water boiler

	VICAL	SPECIFIC				
Parameter		VTC 100 I	VTC 150 L	VTC 200 L	VTC 250 L	VTC 300 I
Angle of Stand	0			25		
Heating Element				Optional		
Anode provision (Ø21.3x 165mm)	No	1	1	1	1	1
Corrosion Protection			Mg Ano	de, Dia.21 x	165mm	
Inlet with 3/4"	nos	1	1	1	1	1
Vent Pipe (Bottom)	nos	1	1	1	1	1
Outlet (Bottom Opening D47)	nos	3/4"	3/4"	3/4"	3/4"	3/4"
Base Length (L)	mm	1965	1965	1965	1965	1965
Base Width (B)	mm	812	1212	1612	2012	2412
Height (H)	mm	1150	11.50	1150	1150	1150
Tank Length (A)	mm	1197	1597	2097	2647	3047

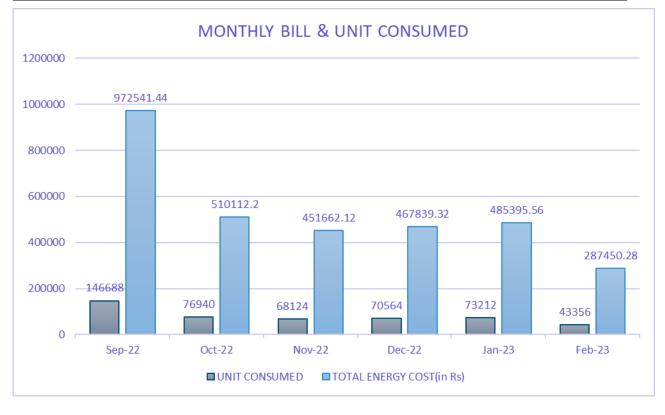
Total number of solar panels	=	4
Capacity of individual panel	=	300 LPD
Cost of installation	=	Rs. 2,00,000 (approx.)
Electrical units used per month	=	5167
Total cost per month	=	34360
Recommended solar boilers	=	60%
Reduction of electrical units	=	2066.8
Total saving	=	20616
Payback time	=	Less than 10 months
STREET LIGHTS		

9

Streets lights are important part of energy management. It is observed that the institution has adopted the solar street lights

The wattage of solar light	=	30 W.
Total lights are	=	68,
so total wattage	=	2040 W or 2.04 KW
One unit of electricity	=	1000 W/h
Operating hours	=	12hr
Units consumed in one day	=	32
Units consumed in one month	=	960
Electrical charges of one month	=	Rs.6345

As the institution is using the solar streets lights so this amount is saved.


ENERGY CONSUMPTION IN COLLEGE

There are two sources of electricity in the facility

- 1. Main electricity with tariff rate of Rs. 6.63 Kw/h
- 2. Electricity from solar with tariff rate of Rs. 4 Kw/h.

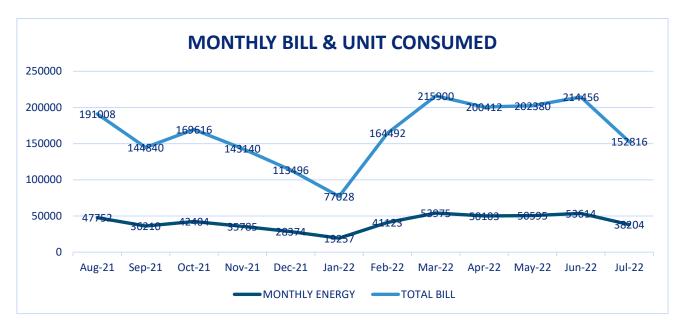
The six-month Energy consumption of the college is shown in below table

S. No	Bill month	Unit consumed	Rate/kwh	Total energy cost(in rs)	Bill no
1	Sep-22	146688	6.63	972541.44	1004317798
2	0ct-22	76940	6.63	510112.2	1001932434
3	Nov-22	68124	6.63	451662.12	1005036457
4	Dec-22	70564	6.63	467839.32	1006747792
5	Jan-23	73212	6.63	485395.56	1005240050
6	Feb-23	43356	6.63	287450.28	1006306609

GRAPHICAL REPRESENTATION

SOLAR ENERGY IN COLLEGE

The campus has installed solar plant of capacity nearly about 599.7 Kw on the monthly tariff of Rs. 4 per unit. Which can be seen in the picture below.



The one-year Solar Energy consumption of the college is shown in below table

SI.NO.	MONTH	MONTHLY ENERGY	RATE /KWH	TOTAL BILL
1	AUGUST-21	47752	4	191008
2	SEPTEMBER-21	36210	4	144840
3	OCTOBER-21	42404	4	169616
4	NOVEMBER-21	35785	4	143140
5	DECEMBER-21	28374	4	113496
6	JANUARY-22	19257	4	77028
7	FEBRUARY-22	41123	4	164492
8	MARCH-22	53975	4	215900
9	APRIL-22	50103	4	200412
10	MAY-22	50595	4	202380
11	JUNE-22	53614	4	214456
12	JULY-22	38204	4	152816
Т	OTAL	497396		

GRAPHICAL REPRESENTATION

The above tables show the graphical representation of consumption of electrical energy and solar energy of six months & twelve months respectively. It is observed that the college installed the solar panels and the capacities are shown below:

10	Address S	Sanchon Los	Contriact Demand	Somer apacity 394 KM	Xmer Rating Volt Amb CHO	149 .
- 1	Main Khalsacolle	494.5KW.	549.45	394KW	630 KNA. Kirloskan()	DS.
	Khalsa Wonen College	150 KW.		117 Kint	Kirloskan(* 315 KMA	NRS.
3	Khalp Public School	64.6 Kul.	71077	49.4 Km	- *	NRS.
4	Musising college	84.73.Kul	94.14	39.3. K14	°	ч
5.	Law calles	49.98 KW	55,53.	• -	-	Ч
6.	Veternians Collete	94.9 KW	100	49.4 Km	-	11
7	Vetermians Hospital	TO KWI	77	-	-	Т.)
8	B.Ed College (R.B)	37.45 KW	41.11	-	-	4
9	Inhernational Public Schad (A.	59.5 KU		-	- ABB. CMA	4
le	Engineering colle		277.5	124	315KNA	4
	Guern Teg Bohdun 1 Calley	39.86 KVI	44.28	-		4
	2 Public school 2 (Hein)	11.9 64		-	-	4
	3 Callege chaminda Devi	37.93 Km	212.14	-		1/

Image shows the Solar Energy used in Campus

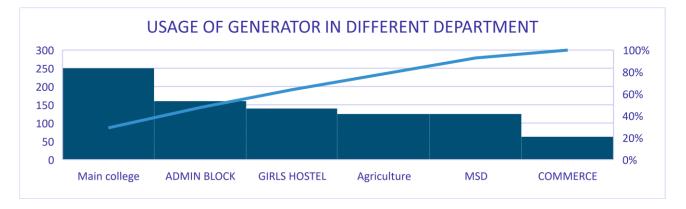
From the above data it is concluded that:					
Total Kw of solar energy	=	599.7 KW			
Total tariff per unit	=	Rs. 4			
Average cost/month from					
one-year bill	=	Rs. 165799			
It is recommended to install at least 34 %	of total sola	ar capacity of their own, which is 200 kw			
Total installation cost	=	Rs. 50,00,000			
Solar bill saved per month	=	Rs. 60,000 (approx.)			
Amount payback	=	6 years (approx.)			

CONCLUSION

From the above data we conclude that the college is borrowing solar energy at the rate of Rs. 4 per kwh and the average of one-year bill is Rs. 1,65,799 approx. By our recommendation the college should buy at least 34% of solar panel of their own, because of this approximately Rs. 60,000 of solar bill is saved. The tentative cost of 200 Kw of solar plant would cost Rs. 50,00,000. This amount can be payback in less than 6 years.

ENERGY SOURCE FROM FUEL (GENERATOR)

A diesel generator is used for emergency power supply in case of electricity shutdown. Diesel generator generates electric energy by using a diesel engine along with an electric generator.


Nowadays, diesel generator usage is essential for industries backup, emergency, and electric systems in case of power failure. Hiring diesel generators for electricity continuously and automatically start the generator when there is a power cut or power shutdown period and generator supplies the power until the power comes back.

The diesel generator is the most important equipment for industries and helps to run the industries' productions continuously. The favourable growth of industries such as oil & gas industries, telecom, mining, constructions, hospitals, and retail shops.

There are mainly 6 Generator in the facility for different department which are shown as below

S.NO.	Department	Rating (in kva)	Fuel consumption @75% of load (liter/ hr)	Tentative use/ month	Total fuel cost/day (in rs.)
1	Main college	250	44	3	11629
2	Agriculture	125	23	3	6078
3	MSD	125	23	3	6078
4	GIRLS HOSTEL	140	26	3	6871
5	ADMIN BLOCK	160	29	3.5	8942
6	COMMERCE	62.5	9.6	3	2537
TOTAL		862.5	154.6	18.5	42000

GRAPHICAL REPRESENTATION

From above data it is observed that there are 6 generators in the campus with different KVA rating the fuel consumption data is derived from the data sheet of Sudhir Power which is provided below:

TECHNICAL DATA

Generator Set Specification	0050050
Model	C250D5P
Duty Rower Rating W/A / W/a	Prime 250/200
Power Rating kVA / kWe	
No. of Phases	3
Output Voltage and Frequency (V and Hz)	415 V, 50 Hz
Power Factor	0.8 (lagging)
Current (A)	348
RPM	1500
Engine specification	O municipality
Make	Cummins®
Model	6L8.9TAA-G4
MoEF Certified Power (bhp)	335
Required Power for Rated kVA (bhp)	303
Cooling	(EG Compleat 50:50)
Aspiration	Turbocharged, Charge air cooled
No. of cylinders	6, In-line
Bore (mm) x Stroke (mm)	114 x 145
Compression ratio	16.6:1
Displacement (litre)	6.7
Fuel	High Speed Diesel
Fuel consumption @75% load with radiator and fan* (litre/hr)	43.43
Fuel consumption @100% load with radiator and fan* (litre/hr)	59.35
Performance class of generator set	ISO 8528-5 G2
Starting system	24 V DC Electrical
Lube oil specification	Cl4+ 15W40
Lube oil sump capacity, High-Low level (litre)	30-20
Total lubrication system capacity (litre)	34
Total coolant capacity (litre)	36.8
Exhaust pipe size (inch)	6
Total wet weight (Engine+Radiator)** (kg)	961
Length x Width x Height (Engine) (mm)	1128 x 791 x1277
Mean piston speed (m/s)	7.2
Combustion air intake @100% load (±5%) (cfm)	637
Exhaust Temperature (°C)	499
Alternator specification	4
Make	Stamford (CGT)
Alternator Frame	UCI274K
Enclosure	IP 23
Voltage regulation (Max.)	±1%
Class of Insulation	H Class
Winding Pitch	2/3
Stator Winding	Double layer lap
Rotor	Dynamically Balanced

And the consumption of fuel per month costs nearly about 42000 per month. The service of the generator is up to date and the latest service record is provided by the institution which is provided as below:

								Tax Invo	ANTIMA STOCIA								
						Invoice No :	and the second se	GINAL FOR RE AR2223000619	1 Contract of the second se				and the state			- sectors	
SUDHIR SALES & SERVICES L	India Limited					Invoice No .	USL	AR2223000019							1.0		al lar
Chembration Business Unit)						Invoice Date :		1-2022	N 6 838					10 2 2 0			
212 1ST FLOOR PRIDE TOWER	KS_EAST M	OHAN NAG	AR,1001	FEETRO		Customer PO Ref N Customer PO Date	lo: VER	BAL		Sales	Vijay K	umpr					
PUNUAE India Prote						ousional no bate				Executive	vijaj i						
For Enalt amtsur@suchrgrou						Order / Enquiry NO	: OTC	-SL-AR-2223-0	00728	Order Date	18-11-	2022		19 18			A RANK
CIN GSTIN DAANCSOB91F1	ZC, PAN No	AANCSOB	91F, Stat	tutory Ta		Payment Terms:	-		130,221	E-Way Bill #	-			1000			
Contraction of the second	and the second			-	-	Payment Mode :	Paid			IRN	-	-					
Shaping Instructions:		_	-STAT	191245												19.000	
KHALSA COLLEGE CHARITABL		sa colle		and so the	Custome			The Party of	Culome	First Name			AND PARTY OF				
SOCETY		RITABLE SC			Custome		1-6RUP-1			Last Name					STATES OF		
KHALSA COLLEGE PUBLIC		SA COLLE		LIC		r Vendor Code:	1. OKOT-T		Contact P					200			
SCHOOL, GT ROAD	Service States	DOL, GT RO			Remarks	Б•	W		J. CHARLES CO.		00000						all and
AMRITSAR - 143001 PUNJAE	PUN	TSAR - 143	001													14	
3	3	ini.															
GSTIN: NA																	
	GSTI	Address of the owner	AMRIT	CAD												e-Invoi	a OR Code
Bill to City: AMRITSAR Shipping Instructions:	Ship	to City:	AMPOL	SAR	-				1		-	1	10 AN 10 M				
and the second	Material	22		100	10000		1	BuyBack Disc	BuyBac		S.F. S.C.	Witter	and the state	1. Minim	SGST Tax	GST Total	
No test # Description	Catalog Number		C UON	/ Qty Un	ilt Price (R	s) Total Amount	Disc Amt	Amt	k % Disc%	Disc Net Taxat	ale Amt	%.CGST	CGST Tax Am	% SGST	Amt	Amt	Grass Amount
340154 TELEMENT, LUB		84212300	Each	1							3				1 1 1 5		Contractor
14 OIL FILTER"				1	3,290.1	6 3290.16	0.00	0.00			3,290.16	9	296.1	1 9	296.	1 592.23	3,882.39
397323 "FILTER FUEL"		84212300	Each								a state		A STATE STATE				
22			1			0004.00	0.00	0.00			2,691.89	0	242.2	7 9	242	484.5	3,176.43
	na series	B4212300	Each	1	2,691.8	9 2691.89	0.00	0.00									the second
397323 "FLTER,FUEL"		64212300	Eau														4.000.44
39		and the second second	- line	1	1,411.9	6 1411.96	0.00	0.00		1	1,411.96	9	127.0	8 9	127.	08 254.1	1,666.11
405896 RESISTOR	324715-14	38200000	Each								III)			The s			in the second
45 CORROSION				4	3,580.7	3580.71	0.00	0.0		1111	3,580.71	9	322.2	6 9	322	26 644.5	4,225.24
	The state of the	84213100	Each		5150011		and the second	121		and the second			11 12 1	-			1. Up
AGK TRZELEMENT FILTER		04210100	12586			in the second		0.0			1.876.59	0	168.8	9 9	9 168.	89 337.7	2,214.38
579	- Aller		4000	1	1,876.5	9 1876.59	0.00	0.0		-	1,070.03	-	100.0		100.		1000
A041RZELEMENTAIR		84213100	Each								1000				J Nam	4	
673 FLTER	101 23			1	4.634.5	4634.59	0.00	0.0	00	1	4,634.59	9	417.1	1	9 417	11 834.2	5,458.82
		40169330	Each							STANT.							PERM
S40380 FOIL SEALED 7 0 TEST STRIPS		-9193940				005.00	0.00	0.0		and the	235.68		21.2	9	9 21	21 42.4	2 278.10
7.0 TEST STRIPS CC28028		1	110	1	235.6	235.68	0.00	0.0				10.000			191-2501	P CONT	
A10480 TOOOLANT.		16119000	Each	1 apr				i al al	and and	- FROM					190		
2 ADDITIVE				14				1			1,513.04		135	7	9 135	17 2723	1,785.39
CONCENTR 1			-	2	756.57		0.00	0.0	the second s		6,234,00		130				
9 505441 VALVOLINE	-	7101980	Each	2	8 117.00	16234.00	0.00		9	-	- Jane - How	-	For	SUDHIR SAL	LES & SERVIC	ES LIMITED.	The second
south the second state of the barrent of the	mark of Cum	nes inc USA	and the	Authoriza	na Dealer/ D	stributor Pre-autho	Indicated for SU	DHIR SALES &									
Cummers Logo is the registered indee is permitted to use the name "Cummin	and 'Com	uns Logo" un	der the C	Dealerana	a Distribution	ship SERVICE	D LINI CU						71.77	111.V.			
Agreement executed with Cummins an	County on	100	1 de	bans.			ed Signatory			Date Friday, Novi	ember 18.	2022	Aut	North And Seguritor			Page 1 of 6
Contrement (Research Sciniture Pro	ented by PAR	TANRITSA	AR.			Authoriz	na aig nan 3										

SERVICE DATA OF GENERATORS PROVIDED BY INSTITUTION

But use of generator causes the carbon emission. The typical emission calculation is given as below:

Pa

Energy Audit Report KHALSA COLLEGE AMRITSAR G.T. Road, Amritsar-143002, Punjab (India)

Subscriber: Viewer

RETScreen - Emission Analysis

Base case electricity system (Baseline)							
	Fuel mix	CO2 emission factor	CH₄ emission factor	N₂O emission factor	Electricity generation efficiency	T&D losses	GHG emission factor
Fuel type	%	kg/GJ	kg/GJ	kg/GJ	%	%	kgCO₂/kWh ▼
- Solar •	40.0%	0.0	0.0000	0.0000	20.0%	7.0%	0.000
Diesel (#2 oil)	4.0%	70.0	0.0020	0.0006	80.0%	7.0%	0.340
+							
Electricity mix	44	3.8	0.0001	0.0000		3.1%	0.014
Baseline changes during project life							
Base case system GHG summary (Baseline))						
	Fuel mix	CO₂ emission factor	CH₄ emission factor	N ₂ O emission factor	Fuel	GHG emission factor	GHG emission
Fuel type	%	kg/GJ	kg/GJ	kg/GJ	kWh ▼	kgCO₂/kWh ▼	tCO2
Electricity	75.9%	3.8	0.0001	0.0000	1,28,107	0.014	1.7
Diesel (#2 oil)	24.1%	70.0	0.0020	0.0006	40,571	0.253	10.3
Total	100.0%	19.7	0.0006	0.0002	1,68,678	0.071	12.0
Proposed case system GHG summary							
	Fuel mix	CO₂ emission factor	CH₄ emission factor	N₂O emission factor	Fuel consumption	GHG emission factor	GHG emission
Fuel type	%	kg/GJ	kg/GJ	kg/GJ	kWh	kgCO₂/kWh	tCO2
Electricity	79.9%	3.8	0.0001	0.0000	83,535	0.014	1.1
Diesel (#2 oil)	20.1%	70.0	0.0020	0.0006	21,024	0.253	5.3
Total	100.0%	17.1	0.0005	0.0001	1,04,559	0.062	6.4
GHG emission reduction summary							
GHG emission							
Base case	tCO ₂	12.0					
Proposed case Gross annual GHG emission reduction	tCO2	6.4 5.5					
	tCO2	2.2					
14							
12							
Base case		Proposed case			tCO ₂ is equivalent to 1.0		
Legend Gross annual GHG emission reduction (4)	6%)			5.5		•	
					Cars & light trucks not used	•	

From the above data we absorb that the GHG emission of generator is nearly about 10.3. And with the slight increase of the use of solar inverters the GHG emission is reduced to 5.3. And the monthly cost of fuel used is also reduced.

The calculations of solar inverter costing, capacity and the payback time is shown below:

Capacity of solar inverter	=	20kw
Cost of 5kw solar inverter	=	Rs. 50000
• So, cost of 20kw solar inverter	=	Rs. 2,00,000
Reduction 20kw from generator costs	=	Rs. 2100
ayback time	=	Less than 6 years

LOAD LIST DEPARTMENT WISE

S.No ·	Department name	Equipment name	Туре	Load (inw)	Qty	Total load (KW)
1	Commerce &	FAN	orient	0.2	117	23.4
	Business	Tube light	Planet gold	20	99	1.9
	Administration	Printer	HP	0.3	5	1.5
		UPS	APC by Schneider Electric	0.2	5	1
		LED	sysca	50	1	0.05
		Computer	Lenovo/Dell/HP/Compa s	150	34	5.1
		Projector	Benq	1	5	5
		Projector Screen	Benq	1	3	3
		Photo state printer	RICOH	1.2	1	1.2
		Refrigerator	LG	0.25	1	0.25
		Microwave	IFB	0.45	1	0.45
		Food Warmer	kitchen link	1	1	1
		Induction cooktop	sun flame	1.5	1	1.5
	TOTAL					45.3704
2	CHEMISTRY	Air Conditioner	Split	2000	2	4
		Air Conditioner	Window	1000	1	1
		Microwave	IFB	1250	2	2.5
		Refrigerator	Whirlpool	300	1	0.3
		Refrigerator	Samsung	300	1	0.3
		Deep Freezer	Ceel Frost	400	3	1.2
		Fuming Hood	NSW	200	2	0.4
		Fuming Hood	Mac	200	2	0.4
		LED Screen	Lenovo	85	1	0.085
		Server (T-440)	Dell	1100	1	1.1
		Fan	Ceiling	80	119	9.52
		Fan	Exhaust	100	30	3
		Tube Light	Fluorescent	80	142	11.36
		Tube Light	LED	18	17	0.306
		Bulb	LED	18	16	0.288
		Bulb	CFL	15	19	0.285
		Spectrophotometer	UV-Visible Carey 60 (Agilent)	150	1	0.15
		Spectrophotometer	Fluorescence (Agilent)	150	1	0.15
		Spectrophotometer	IR (Shimadzu)	100	1	0.1
		Spectrophotometer	Scanning Visible (Elico) SL-177	100	4	0.4
		Spectrophotometer	Visible (Elico) SL-27	120	4	0.48
		Spectrophotometer	UV-Visible (Elico) SL-164	100	1	0.1

Spectrophotometer	UV-Visible (Labtronics) LT-2900	130	1	0.13
Spectrometer	Electronics (301E)	120	1	0.12
Spectrophotometer	Digital (Systronic-105)	120	1	0.12
Spectrophotometer	Digital (Systronic-106)	120	2	0.24
Spectrophotometer	Elico (SL-171)	120	4	0.48
Microwave	Biotage	400	1	0.4
synthesizer				
Microscope	Stereozoom with USB Camera	100	1	0.1
Furnace	Muffel (NSW)	6000	1	6
Oven	Hot Air (Perfit)	1200	1	1.2
Oven	Universal (NSW-143)	750	3	2.25
Oven	Universal (NSW-144)	750	1	0.75
Oven	High Temperature Oven	750	1	0.75
Hot Plates	Perfit	3000	3	9
Hot Plates	NSW	3000	3	9
Water bath	12 Holes	1500	12	18
Water bath	6 Holes	1000	4	4
Computer	(Dell + Lenovo + HP)	70	28	1.96
Server (ML-110 G5)	HP	200	1	0.2
UPS	(Datavision + APC + Microtech)	600	23	13.8
UPS	Datavision	1250	1	1.25
Online UPS	Datavision	7500	1	7.5
UPS	Datavision	3000	1	3
Projector	Ricoh	200	2	0.4
Projector	BenQ	200	2	0.4
Projector	Complete Smart Room	200	1	0.2
Projector	Sony	200	1	0.2
Projector	Suvira	200	1	0.2
Printer-Photocopier	Ricoh (1813 L)	1100	1	1.1
Printer	HP-LJ1020	250	2	0.5
Printer	3 in 1 (HP-LJ 1005)	250	7	1.75
Chiller	NSW-136	4000	1	4
Chiller	Ultra Cryostat Circulator (Metrex)	4000	1	4
Stabilizer	Automatic Voltage Stabilizer (NSW)	6000	2	12
Stabilizer	Servo-stabilizer	5500	1	5.5
Autoclave	Tencho PLT-104	1500	1	1.5
Aspirator Vacuum Pump	Metrex (MAS-900)	200	3	0.6
Autovariac	Popular (PT-1005)	500	1	0.5
Scanner	Canon (CanoScan LiDE	12	1	0.012

Electrical Balance	Digital (Shimadzu + Citizen)	10	18	0.18
Electrical Centrifuge	REMI	180	14	2.52
Polarography	Elico (CL-357)	100	1	0.1
Aspirator Vacuum Pump	Eyela	200	1	0.2
pH-Meter	Elico + Systronic	10	11	0.11
pH, Conductivity & Temp meter	EI (181E)	10	8	0.08
Colorimeter	EI (312) + Elico	10	10	0.1
Potentiometer	VSI + Equiptronics + Systronics	300	12	3.6
Disintegration Apparatus	Lab India (DT- 1000)	125	1	0.125
Friability Test Apparatus	Lab India (FT-1020)	125	1	0.125
TDS Meter	EI (651E)	10	1	0.01
Turbidity meter	EI (331E)	10	1	0.01
Conductivity meter	Digital/Deluxe (Sys + Elico + Equip + El)	15	42	0.63
Flame Photometer	Systronics	10	2	0.02
Heating Mantel (1L)	Perfit	300	11	3.3
Heating Mantel (250 ml)	Perfit	200	21	4.2
Heating Mantel (500 ml)	Perfit	200	15	3
Deionizer	Ind Ion CA 20	72	1	0.072
Deionizer	LIP Demineralizer WAT ION VSD 200	72	1	0.072
Stirrer	REMI (RQG-128A/D)	10	4	0.04
Stirrer Magnetic	REMI + Swavlamvan + Tarson	12	34	0.408
Stirrer Magnetic With heating	Remi + Tarson	550	12	6.6
Centrifuge	REMI	110	1	0.11
Melting Point Apparatus	Veego VMP-1 + MSW + Perfit + Popular	60	19	1.14
pH, Temp/ mV meter	Systronic - 361	5	4	0.02
Public Address System		200	1	0.2
Polari meter	Advance + Tencho + Focus + Equip. + MSW	100	10	1
Polaroscan	Systronics 1634	100	1	0.1
Rotamantel	REMI	500	4	2

		Rotary Shaker	NSW	230	3	0.69
		Rotary Vacuum Film Evaporator	Perfit	300	2	0.6
		Shaking Machine	German Make	300	1	0.3
		Transformer for Polarography		500	1	0.5
		UV-Chromatography Inspection Cabinet	Perfit	100	1	0.1
		Voltage Stabilizer (For Chiller)		50	1	0.05
		Voltage Stabilizer (AC)		50	2	0.1
		Vacuum Pump	Tarson + Perfit	500	4	2
		Water bath Incubator Shaker	NSW BIS-3	1000	1	1
		Water bath Serological	NSW + Perfit	250	3	0.75
		Water bath Shaker	REMI PSB-12	250	1	0.25
	TOTAL					186.948
3	BOTONY	Oven	Universal (1), Macro scientific woks (2). Yoroo (1)	2	4	8
		Spectrophotometer	Elico (1), Systronics (1), Environmental Scientific Instruments Co Ltd Model 301E (1)	200	3	0.6
		Distillation Unit	Infusal India , Model Dstilion 2S	3	1	3
		Centrifuge	Remi	500	4	2
		Water bath	Macro scientific works	500	2	1
		Deep freezer	Blue Star	200	1	0.2
		Seed germinator	Remi (1), Adarsh (1)	200	2	0.4
		BOD	SESCO, Model SESCO- 152	200	1	0.2
		Autoclave	Narang Scientific Works, NSW-227	2	2	4
		Fridge	LG (2), Kelvinator 165 litre (1)	150	3	0.45
		Tissue Culture Rack	Macro Scientific Works	200	1	0.2
		Laminar Air Flow	SESCO-260 (1), Adarsh	200	2	0.4
			(1)			
		Computer	(1) Hp (1), DELL (1), Lenovo (2), Elico (1)	170	5	0.85
		Computer Printer	Hp (1), DELL (1), Lenovo	170 50	5	0.85
			Hp (1), DELL (1), Lenovo (2), Elico (1)			

		Microwave	IFB, Model-17PM-MEC1	900	1	0.9
		RO	Eureka Forbes	50	1	0.05
		Fan	Orient	48	100	4.8
		Tubes	Philips (70), Crompton (12), Surya (10)	35	92	3.22
	TOTAL					32.87
4	BIOTECHNOLOG Y	Centrifuge With Rotors	R8 C	1200	1	1.2
		Centrifuge With Rotors (R-8C)	R8 C	110	1	0.11
		(Transferred from Botany dept.)				
		Centrifuge With Rotors (High Speed Cooling)	RC 24BL	320	1	0.32
		Centrifuge With Rotors	PT 660)	150	1	0.15
		Standard Heating Block	101770 Genei	500	1	0.5
		Standard Heating Block	T C S P 1 Genei	800	1	0.8
		Dry Bath	36326/1793087	150	1	0.15
		Centrifuge with Fixed Rotor (107944 Genei	1200	1	1.2
		Printer	HPLJ 1008	285	1	0.285
		UPS. Data Vision	V.A 600	600	1	0.6
		Printer	H.P.1005 MFP	1000	1	1
		Computers	(DELL) 660	220	3	0.66
		U.P.S.	600/C /APC	850	3	2.55
		computers	Lenovo	160	2	0.32
		Printer	3745	430	1	0.43
		Electronics Weighing Balance	D307531119	60	1	0.06
		Electronics Weighing Balance	D-432910748	80	1	0.08
		Air Conditioner Split with Auto Stabilizer	LG	530	2	1.06
		Electronic Weighing Balance	912074	80	1	0.08
		Elisa Reader	Thermos 51118170	170	1	0.17
		Ligation Bath	Genei 107945	1000	1	1
		Magnetic Stirrer with Hot Plate	Genei 107945	180	2	0.36
		Magnetic Paddles	Genei 107049	500	1	0.5
		Micro Wave Model	LG393	800	1	0.8

Micro Wave Model	LG 7040	800	1	0.8
				2.5
Power Supply 10.01	Genei PS 100	2500	1	2.5
Power Supply 10.	01 Genei PS 500	2500	1	2.5
Power Supply 12.04	Genei PS 3000	2500	1	2.5
Refrigerator	LG 325	200	1	0.2
Refrigerator	LG-352	200	1	0.2
Refrigerator	RLR-200	250	1	0.25
Electrophoresis Apparatus	Cat No. PT-57	300	1	0.3
Vortex Mixer 18-01	106887 Genei		1	0
PH Meter	Systronics	125	5	0.625
B.O.D. Incubator 570x550x875 mm	NSW 152	3000	2	6
Rotary Vacuum Film Evaporator	Perfit 959	400	1	0.4
Heating Mantles	JSGW	130	5	0.65
Oven 455x455x605	NSW 143	150	1	0.15
Oven 455x455x605	NSW 143	150	1	0.15
Oven 300x300x300	NSW 143	100	1	0.1
Oven 455x455x605	NSW 143	150	1	0.15
Hot Air Oven 300x300x300	400/25	100	1	0.1
Hot Air Oven 455x455x605	400/25	150	1	0.15
Water Bath Incubator Shaker (Serological) 405x300x150 (18 Litre)	NSW	200	1	0.2
Water Bath Incubator Shaker (Serological) 330x300x175 (18 Ltr)	NSW	150	1	0.15
Water Bath Incubator Shaker (Serological) 430x240x265	NSW Steel 129	150	1	0.15
Autoclave 98 Litre	NSW 227	4000	1	4
Autoclave 300x500 mm	NSW 227	3000	1	3
Autoclave 80 ltr	NSW	4000	1	4
Autoclave Portable	8419	150	1	0.15
Deep Freezer Horizontal	REMI RQFV 170650 -20 C	150	1	0.15

1	I	1	r	
Deep Freezer Horizontal	BFS150	100	2	0.2
UV Vis Spectrophotometer	Systronic 118	240	1	0.24
UV VIS (Transferred from Botany Dept.)	-			
UV Vis	17 2000	180	1	0.18
Spectrophotometer	LT 2900	180	1	0.18
Laminar Air Flow	NSW-01	50	1	0.05
6x2x2 Horizontal (Transferred from Botany Department)				
Laminar Air Flow	NSW 202	350	1	0.35
600x600x600 mm Steel				
Laminar Air Flow	NSW 201	160	1	0.16
600x600x600 Wood 201		100	-	0.10
Laminar Air Flow	Perfit	180	1	0.18
High Speed Homogenizer	-	8000	1	8
(Transferred from Botany Dept.)				
Hot Plate		4	1	0.004
Hot Plate with Magnetic Stirrer	(Remi)	330	1	0.33
Hot Plate) 18x18 cm	Tarson 5030	200	1	0.2
Tissue Culture Rack	(RP15302) Restolar	400	2	0.8
Double Distillation Apparatus 3 litre	JSGW 421/6	3000	1	3
Double Distillation Apparatus (Single)	JSGW 425/6	1500	1	1.5
Mixer	Remp 101	32	1	0.032
Incubator 455x455x605	NSW 125 Litre	120	1	0.12
Incubator (super deluxe) 455x455x605	401324	250	1	0.25
Incubator Bacteriological 605x605x605	410/25	500	1	0.5

		PID controller		40	1	0.04
		Micro Scopes	Getner	100	5	0.5
		(Transferred from				
		Botany Dept.)				
		Micro Scopes Inverted	Olympus	150	1	0.15
		9C05979				
		Micro Scopes Binocular	MLXI	180	1	0.18
		Co ₂ Incubator	S.C.A. 165 DRS	750	1	0.75
		Gel Documentation	Genei) 107947	90	1	0.09
		Fermenter 3Litre	Biospin-03A	2	1	2
		Inverter			1	0
		Air Curtain A.C.	Micro 1200 mm	260	2	0.52
		Multimedia projector	PDCBE02395000		1	0
		Incubator shaker /	Eppendorf	15	1	0.015
		PCR/ ThermoCycler	Eppendorf	100	1	0.1
		Digital colony Meter	PT859	20	1	0.02
		Computer	Lenovo	70	1	0.07
		Micro Colorimeter 8 Filters	ELICO/CL63		1	0
		Dissolved Oxygen meter	L01197023	300	1	0.3
		Soxhlet Heating Mantle for Extraction	-	600	1	0.6
		Auto Clave 450x600mm	(NSW227)	4000	1	4
		Weighing Balance	Shinko Japan (DJ-300)	10	1	0.01
		Turbidity meter	Desible D.B. 1103	10	1	0.01
		LED Bulbs	-	23	81	1.863
		Fans	-	75	137	10.275
	TOTAL					81.499
5	FOOD SCIENCE & TECHNOLOGY	APPRATUS DISTILATION		2000	1	2
		VERTICAL AUTOCLAVE	MV Matrix	2000	1	2
		BAKING OVEN	Lablink	200	1	0.2
		BULB (LED)	Syska	18	1	0.018
		BURSTING STRENGH APPRATUS	Lablink	500	1	0.5

CENTRIFUGE	Lablink	200	1	0.2
COLONY COUNTER	Temp Star	300	1	0.3
COMPUTER	Dell	200	5	1
DISTILATION APRATUS	Punjab	1000	1	1
ELECTRIC SEALING MACHINE		230	1	0.23
ELECTRIC TANDOOR	Supercool	3000	1	3
FAN	Orient	75	115	8.625
FOOD WARMER	Lablink	2000	1	2
FOOD WARMER	Lablink	2000	1	2
GRAMMAGE	Wensar	0.003	1	0.00000 3
GRINDER	Orpat	0.6	1	0.0006
HAMMER MILL	Natraj	2000	1	2
HAND MIXER	Philips	240	1	0.24
HEATING MANTLE	Labtherm	400	4	1.6
HOT AIR OVEN	Labtherm	1500	3	4.5
INCUBATOR	Labtherm	100	1	0.1
INFRARED	Philips	150	1	0.15
LAMINAR AIR FLOW	Toshiba	450	1	0.45
MAGNETIC STRIRRER WITH HOT PLATE	New India	180	1	0.18
MELTING POINT APPRATUS	New India	230	1	0.23
MICROWAVE	LG	450	2	0.9
OVEN TOASTER GRILLER	LG	1280	1	1.28
PH- METER	Labtronics	250	1	0.25
PRINTER	НР	300	6	1.8
RICE DEHUSKER	Lablink	500	1	0.5
REFRIGERATED CENTRIFUGE	Lablink	250	1	0.25
REFRIGERATOR	LG	250	2	0.5
REFRIGERATOR	LG	200	1	0.2
REFRIGERATOR	SAMSUNG	230	1	0.23
RICE POLISHER	Lab link	2000	1	2
ROTARY SHAKER	New India	1000	2	2
SIEVE SHAKER		1001	1	1.001
SPECTROPROTOMETE R	Labtronics	500	1	0.5
TRAY DRIER	Lab link	2500	1	2.5
TUBLIGHT	Wipro	20	35	0.7
VACCUM EVAPORATOR	New India	250	1	0.25

			E I	500	4	0.5
		VENTURI ORIFICE METER	Forged	500	1	0.5
		WATER BATH	Permit India	2000	2	4
		WOODEN CABINET DRIER		200	1	0.2
		WEIGHNING BALANCE	Wesner	100	2	0.2
		ICE CREAM PLANT				52.2846
		VAT PASTERIZER	Singer		1	3
		HOMOGENIZER	Singer		1	
		SURFACE COOLER	Singer	••	1	
		AGEING VAT	Singer		1	
		ICE CREAM MAKER	Singer		1	
		CONDENSING UNIT (AGEING VAT)	Singer		1	
		CONDENSING UNIT (SURFACE COOLER)	Singer		1	
		DEEP FREEZER	Blue Star		3	
	TOTAL		· ·			55
6	Arts and Humanities	Tube Lights	Tube Light = 36	36x20 = 720 W	36	0.72
		Fans	Celling = 61	61x50 = 3050 W	61	3.05
			Wall Fan = 05	05x50 = 250 W	5	0.25
	TOTAL					4.02
7	SOCIAL SCIENCE	Tube Lights	CFL = 12	12x20 = 240 W	12	0.24
			LED = 28	28x18 = 504 W	28	0.504
				30110		
		Fans	Celling = 29	29x50 = 1450 W	29	1.45
		Fans	Celling = 29 Wall Fan = 01	29x50 =	29 1	1.45 0.05
		Fans Computer	_	29x50 = 1450 W 01x50 =		
			Wall Fan = 01	29x50 = 1450 W 01x50 = 50 W 02x 250	1	0.05
		Computer	Wall Fan = 01 Electronic	29x50 = 1450 W 01x50 = 50 W 02x 250 = 500 W	1	0.05
	TOTAL	Computer Printer	Wall Fan = 01 Electronic 3 - in - 01	29x50 = 1450 W 01x50 = 50 W 02x 250 = 500 W 50 W	1 2 1	0.05
8	TOTAL Zoology	Computer Printer	Wall Fan = 01 Electronic 3 - in - 01	29x50 = 1450 W 01x50 = 50 W 02x 250 = 500 W 50 W	1 2 1	0.05 0.5 0.05 0.25
8		Computer Printer Projector	Wall Fan = 01 Electronic 3 - in - 01 -	29x50 = 1450 W 01x50 = 50 W 02x 250 = 500 W 50 W 250 W	1 2 1 1	0.05 0.5 0.05 0.25 3.044
8		Computer Printer Projector Digital weighing scale	Wall Fan = 01 Electronic 3 - in - 01 - Kern, Citizen, And	29x50 = 1450 W 01x50 = 50 W 02x 250 = 500 W 50 W 250 W 10 W	1 2 1 1 3	0.05 0.5 0.05 0.25 3.044 0.03
8		Computer Printer Projector Digital weighing scale Digital calorimeter	Wall Fan = 01 Electronic 3 - in - 01 - Kern, Citizen, And Naina, Eqiup-Tronics	29x50 = 1450 W 01x50 = 50 W 02x 250 = 500 W 50 W 250 W 10 W	1 2 1 1 3 2	0.05 0.5 0.05 0.25 3.044 0.03 0.2

9

-	1		•		
	Autoclave	NSW	2KW	1	2
	Centrifuge	Remi	300 W	2	0.6
	Refrigerated Centrifuge	Eltek	300W	1	0.3
	Mini Centrifuge	Unitron	100W	1	0.1
	Furnace	Metrex	4KW	1	4
	Water bath	JSGW, NSW	300 W	2	0.6
	Oven	NSW	3 KW	2	3
	Rotary Shaker	NSW	230 W	1	0.23
	Tissue Flotation Bath	NSW	300 W	1	0.03
	Hot Plate	Navyug, Shiv Kumar	300W	2	0.6
	Muffle furnace	Navyug	2KW	1	2
	Blade Sharpener	Navyug	150 W	2	0.3
	Refrigerators	Samsung, Whirlpool	350W	3	1.05
	B.O.D Incubator	NSW, Metrex	1500 W	2	3
	Ultra purifier	Rions	11 W	1	0.011
	Digital presenter	Mega Power	20W	1	0.02
	Rotavapor and compressor	JSGW	1 KW	1	1
	Kjeldahl Flask heater		200W	1	0.2
	Electrophoresis Unit	Genei	80 W	1	0.08
	Photo colorimeter	J Mitra	10W	1	0.01
	Chemical analyser	Erba Manhein	50 W	1	0.05
	UV Spectrophotometer	Systronics	150 W	1	0.15
	Egg incubator	Yorco	120 W	2	0.24
	Homogenizer	Eltek	850 W	1	0.85
	U.V. Illuminator	Genei	30 W	1	0.03
	LED Screen (32, 40, 55 inch)	Panasonic, Samsung	~40 W	3	0.12
	Multimedia projector	Panasonic, Zion	150W	3	0.45
	Computer	HP, Dell	30 W	9	0.27
	Printer	НР	30 W	3	0.09
	Fans	Orient	55W	66	3.63
	Lights		20W	60	1.2
TOTAL					26.851
HISTORY	TUBE LIGHTS	Wipro	40	4	0.16
	CFL	Energetic	20	1	0.02
		Calling	75	4	0.3
	FANS	Ceiling	/5	4	0.5
	FANS COMPUTER	Lenovo-Desktop	170	4	0.17

	TOTAL					0.7
10	Economics	Tube lights		40	36	1.44
		Fans		75	51	3.825
		Computer		170	1	0.17
		Printer		30	1	0.03
		Hot case		600	1	0.6
	TOTAL			1		6.065
11	Physical	Bulb	LED Crompton	9	5	0.045
	Education	Fan	Ceiling Orient	48	6	0.288
		AC 2 Ton	Split Dakin	2000	1	2
		Refrigerator 241 LTR	241 LTR Voltas Beko	140	1	0.14
		Computer	Desktop HP	70	1	0.07
		Printer	Laser HP	40	1	0.04
		AC Stabilizer	Automatic	Magnu m	1	0
		Heat Blower	Blower	2000	1	2
		Fan	Ceiling Orient	48	5	0.24
		Bulb	LED Ceiling Surface Light	30	3	90
		Bulb	LED Orient	18	5	0.09
		Water Purifier	RO	60	1	0.06
		Water Motor	Under Ground	1000	1	1
		Fan	Exhaust	75	1	0.075
		Motor	Filter Motor	1000	2	2
		Pump	Electric Metering Pump	1000	2	2
		Motor for Swimming Pool Cleaning	Super Section Pump	1000	1	1
		Tube Light	LED Syska	20	3	0.06
		Tube Light	LED Slim Ray	20	1	0.02
		Fan	Ceiling Orient	48	2	0.096
		Bulb	LED Orient	18	1	0.018
		Bulb	LED Havel's	15	1	0.015
		Bulb	LED Orient	18	1	0.018
		Fan	Ceiling Orient	48	1	0.048
	TOTAL					101.323
12	PHYSIOTHERAPY	Fans		60	93	5.58
		CFL		20	74	1.48
		Tubes		40	18	0.72
		Bulbs		100	9	0.9
		Exhaust fans		40	11	0.44
		Therapeutic Ultrasound		45	2	0.09
		Short wave Diathermy		500	2	1
		Traction		85	2	0.17

		Stimulator		200	2	0.4
		Long wave diathermy		80	1	0.08
					-	0.00
		Infra-red lamp		215	1	0.215
		UVR Lamp		220	1	0.22
		Wax Bath		250	1	0.25
		Hydro-collateral Unit		200	1	0.2
		Laser Machine		180	1	0.18
		Detox Machine		150	1	0.15
		Analgesic Pulsar		220	2	0.44
		Intermittent Compression		60	1	60
		Therapy Unit				0
		Continuous Passive Movement		100	1	0.1
		EMG Unit		119	1	0.119
		Stress testing machine		220	1	0.22
		Printers		90	3	0.27
		Computers		150	1	0.15
		CPR machine		200	1	0.2
		Refrigerator		800	1	0.8
1						
	TOTAL				1	74.374
13	Political Science	Tube Lights	Tube Light = 12	20	12	
13	Political Science & Public	-	Tube Light = 12 LED = 08		I I	74.374
13	Political Science	-	-	20	12	74.374 0.24
13	Political Science & Public	Tube Lights	LED = 08	20 18	12 8	74.374 0.24 0.144
13	Political Science & Public	Tube Lights Fans	LED = 08 Celling = 20	20 18 75	12 8 20	74.374 0.24 0.144 1.5
13	Political Science & Public	Tube Lights Fans Computer	LED = 08 Celling = 20 Electronic	20 18 75 250 01x50 =	12 8 20 1	74.374 0.24 0.144 1.5 0.25
13	Political Science & Public Administration	Tube Lights Fans Computer	LED = 08 Celling = 20 Electronic	20 18 75 250 01x50 =	12 8 20 1	74.374 0.24 0.144 1.5 0.25 0.05
	Political Science & Public Administration	Tube Lights Fans Computer Printer	LED = 08 Celling = 20 Electronic 3 - in - 01	20 18 75 250 01x50 = 50 W	12 8 20 1 1	74.374 0.24 0.144 1.5 0.25 0.05 2.184
	Political Science & Public Administration TOTAL Library	Tube Lights Fans Computer Printer A.C. (Complete Set)	LED = 08 Celling = 20 Electronic 3 - in - 01 A.C.	20 18 75 250 01x50 = 50 W 1500	12 8 20 1 1 2	74.374 0.24 0.144 1.5 0.25 0.05 2.184 3
	Political Science & Public Administration TOTAL Library	Tube Lights Fans Computer Printer A.C. (Complete Set) CCTV Cameras	LED = 08 Celling = 20 Electronic 3 - in - 01 A.C. Camera	20 18 75 250 01x50 = 50 W 1500 20	12 8 20 1 1 2 8	74.374 0.24 0.144 1.5 0.25 0.05 2.184 3 0.02
	Political Science & Public Administration TOTAL Library	Tube Lights Fans Computer Printer A.C. (Complete Set) CCTV Cameras Celling Fan	LED = 08 Celling = 20 Electronic 3 - in - 01 A.C. Camera Fan	20 18 75 250 01x50 = 50 W 1500 20 75	12 8 20 1 1 1 2 8 79	74.374 0.24 0.144 1.5 0.25 0.05 2.184 3 0.02 5.925
	Political Science & Public Administration TOTAL Library	Tube Lights Fans Computer Printer A.C. (Complete Set) CCTV Cameras Celling Fan CFL	LED = 08 Celling = 20 Electronic 3 - in - 01 A.C. Camera Fan CFL Bulbs	20 18 75 250 01x50 = 50 W 1500 20 75 20	12 8 20 1 1 1 2 8 79 124	74.374 0.24 0.144 1.5 0.25 0.05 2.184 3 0.02 5.925 2.852
	Political Science & Public Administration TOTAL Library	Tube Lights Fans Computer Printer A.C. (Complete Set) CCTV Cameras Celling Fan CFL Computers	LED = 08 Celling = 20 Electronic 3 - in - 01 A.C. Camera Fan CFL Bulbs Computer	20 18 75 250 01x50 = 50 W 1500 20 75 20 120	12 8 20 1 1 1 2 8 79 124 11	74.374 0.24 0.144 1.5 0.25 0.05 2.184 3 0.02 5.925 2.852 1.32
	Political Science & Public Administration TOTAL Library	Tube Lights Fans Computer Printer A.C. (Complete Set) CCTV Cameras Celling Fan CFL Computers Computer UPS	LED = 08 Celling = 20 Electronic 3 - in - 01 A.C. Camera Fan CFL Bulbs Computer UPS	20 18 75 250 01x50 = 50 W 1500 20 75 20 120 120 50	12 8 20 1 1 1 2 8 79 124 11 5	74.374 0.24 0.144 1.5 0.25 0.05 2.184 3 0.02 5.925 2.852 1.32 0.25
	Political Science & Public Administration TOTAL Library	Tube Lights Fans Computer Printer A.C. (Complete Set) CCTV Cameras Celling Fan CFL Computers Computer UPS Exhaust Fan	LED = 08 Celling = 20 Electronic 3 - in - 01 A.C. Camera Fan CFL Bulbs Computer UPS Fan	20 18 75 250 01x50 = 50 W 1500 20 75 20 120 50 80	12 8 20 1 1 1 2 8 79 124 11 5 7	74.374 0.24 0.144 1.5 0.25 0.05 2.184 3 0.02 5.925 2.852 1.32 0.25 0.56
	Political Science & Public Administration TOTAL Library	Tube LightsFansComputerPrinterA.C. (Complete Set)CCTV CamerasCelling FanCFLComputersComputer UPSExhaust FanHP 1020 (Printer)HP Laser Jet M 1005	LED = 08 Celling = 20 Electronic 3 - in - 01 A.C. Camera Fan CFL Bulbs Computer UPS Fan Computer Printer	20 18 75 250 01x50 = 50 W 1500 20 75 20 120 50 120 50 80 75	12 8 20 1 1 1 2 8 79 124 11 5 7 2	74.374 0.24 0.144 1.5 0.25 0.05 2.184 3 0.02 5.925 2.852 1.32 0.25 0.25 0.56 0.15

		LCD	LCD TV	70	1	0.07
		Online UPS	UPS	2000	1	2
		Refrigerator	Refrigerator	280	1	0.28
		Ricoh Alicia MP 2550 B	Photostat Machine	1500	1	1.5
		Tube Light Long	Tube light	20	22	0.44
		Wall Fan	Fan	75	3	0.225
		Water Filter (R.O)	R.O.	65	1	0.065
	TOTAL					19.407
15	PHYSICS	Celling fan, exhaust fan, wall fan	Fan	80	124	9.92
		AC	AC	2000	4	8
		Computer System	Computer	150	21	3.15
		UPS	Computer	1440	13	18.72
		Printer	Printer	720	6	4.32
		Instrument B.ScI (Electric kettle efficiency)	Instrument	250	6	1.5
		Instrument B.ScII (battery charger)	Instrument	1500	6	9
		(Na, Hg lamp)	Instrument	55	27	1.485
		Table Lamp	Instrument	100	22	2.2
		DSO	Instrument	30	5	0.15
		CRO	Instrument	45	30	1.35
		Instrument B.ScIII	Instrument	30	300	9
		MSc Instrument CMP lab, Electronics, Nuclear, spectroscopy lab)	Instrument	50	540	27
		LED Bulb	Light	18	21	0.378
		Tube lights	Light	40	76	3.04
		thin film deposition unit	Instrument	5000	1	5
		Submersible Pump	Water Pump	1592	1	1.592
		Hot air Oven	Instrument	2000	1	2
		Refrigerator	Instrument	150	1	0.15
	TOTAL					107.955
16	GURMAT STUDY	FAN	ORIENT	48	31	1.488
		LED TUBE	SYSKA	40	28	1.12
		LED BULB	SURYA	18	18	0.324
	TOTAL					2.932
17	MUSIC	FANS	CELLING FANS	48	39	1.872
		LED(WHITE)		18	2	0.036

		LED(YELLOW LIGHTS)		18	0	0
		TUBE LIGHTS		40	23	0.92
		COMPUTER SYSTEM	TFT MONITER	170	1	0.17
	TOTAL					2.998
19	FASHON	Fans	Ceiling Fan	50	64	3.2
	DESIGNING	Fan	Wall Fan	50	1	0.05
		CFL		20	48	0.96
		LED Penal light		15	10	0.15
		Air condition	Split AC	2000	1	2
		Tubes	Fluorescent	42	1	0.042
	TOTAL					6.402
20	ENGLISH	Ceiling Fans	Crompton	50	39	1.95
		Tube lights	Havel's	40	29	1.16
		Cabin Fans	Orient	50	3	0.15
		Inverter	Luminous	650	1	0.65
		Oven(E. Heater)	Nat raj	100	1	0.1
		Bulb(LED)	Syska	18	3	0.054
		Refrigerator	Samsung 301 LITRE	1500	1	1.5
		T. V	Sony	200	1	0.2
		LED	Panasonic	200	1	0.2
		Induction	Glen	1400	1	1.4
		Printer	Intel	200	2	0.4
		Computer	Dell	150	15	2.25
		Wireless Receiver	Ahuja	500	1	0.5
		A. C	Mitsubishi	2000	1	2
		Speakers	Ahuja	75	5	0.375
		Amplifier	Ahuja	100	1	0.1
		Projector	Rioch	250	1	0.25
	TOTAL					13.239
21	AGRICULTURE	TRAYDRYER		2000	1	2
		HOT AIR OVEN		1000	11	11
		FRUIT FRUSHER		1000	1	1
		REFRIGERATOR		800	9	7.2
		CANDI COOL		1000	2	2
				500	1	0.5
		SIEVE SHAKER		1800	2	3.6
				1200	1	1.2
				1500	4	6
		GRIL OVEN		2300	1	2.3
		BAKING OVEN		1000	1	1
				350	40	14
		FRUIT PULPER		1000	1	1
		WATER BATH		1000	6	6

SOIL TESTING MACHINE	2000	1	2
SPECTRO PHOTO METER	500	2	1
WEIGHING BALANCE	10	8	0.08
SPLIT AC	1000	1	1
SPLIT AC	1000	7	7
SPLIT AC	2000	3	6
CENTRI FUGE	1000	4	4
MICRO KJELDAHL ASSEMBLY	1000	2	2
FUME HOOD	2000	2	4
DIGESTION ASSEMBLY	1000	1	1
ROTARY SHAKER	1000	2	2
B.O.D	2000	7	14
PH METER	50	7	0.35
EC METER	50	5	0.25
FLAME PHOTO METER	50	2	0.1
MEGNETIC STIRER	50	2	0.1
COLORI METER	50	1	0.05
HOT PLATE	2000	7	14
JUICER	900	3	2.7
MIXER	900	1	0.9
DEEP FREEZER	2000	1	2
TISSU CULTURE RACK	1000	1	1
AUTO CLAVE	3000	3	9
LAMINAR AIR FLOW	500	1	0.5
AIR CUTTER	500	1	0.5
SEED GARMINATOR	1500	2	3
GROTH CHAMBAR	300	1	0.3
SHAKER	1000	1	1
KJELDAHL NITROGEN	6000	1	6
OIL SEED PRESS MACHINE	500	1	0.5
SOXHLET APPARATUS	1000	1	1
PROJECTOR	2000	1	2
HEATING MANTLE	350	1	0.35
PRINTER	50	14	0.7
MICROSCOPE STEREO	1000	24	24
POTER SPRAYER	1000	3	3
Scanner	1000	2	2
UPS	450	17	7.65

	ROUTER	20	6	0.04
	SPEAKER	2000	2	4
	AMPLIFIER	1000	1	1
	MIXER	1000	1	1
	AUDIO RECORDER	500	1	0.5
	DISTILLED WATER UNIT	880	1	0.88
	MICRO SCOPE	1000	13	13
	HUMID FIRE WALL	1000	1	1
	FAN	40	389	15.56
	LED BULB	23	92	2.116
	TUBE	40	86	3.44
	EXHAUST FAN	28	28	0.784
	TUBE SMALL	15	11	0.165
	BULB	15	29	0.435
	LED TUBE	20	16	0.32
	SUBMERSIBLE PUMP	2 HPWR	1	1.49
	RO SYSTEM	1 KW	1	1
	WATER CANDY	1 KW	1	1
	LED TV 55"	150	1	0.15
	INTERACTIVE PANEL	240	1	0.24
	ONLINE UPS	3 KW	1	3
	ONLINE UPS	2 KW	2	4
	INVERTER	150	1	0.15
	HOT CASE	1500	3	4.5
	CHIMNI	100	1	0.1
	GRILLEER	100	1	0.1
	INDUCTION	1800	6	10.8
TOTAL				256.6

PHOTOS OF OVENS IN LABS

NABHA	NABHA HOSTEL										
Room wise	Fan	Tubes	6amp socket	16amp socket	Geyser	Ac	Water motor	Refrigera tor			
Office	4	7	8	-	-	-	1 HP	-			
Readi ng Room	6	6	2	-	-	-	-	-			
Guest Room	2X2=4	2X2=4	2X1=2	-	2X1=2 4KW	-	-	-			
GYM	6	3	2	-	-	-	-	-			
Hostel Room 4X36	2X36=72	2X36=72	36X1=36	-	-	-	-	-			
Corrid or	-	7X2=14	-	-	-	-	-	-			
washr oom	-	2X4=8	-	-	2-3KW 2-1.8KW	-	12.5 HP 3Phas e	-			
Total	92X60=5.5 20KW	114X20=2. 280KW	50X60=3.0 00KW	-	10.6KW	-	10KW				
NABHA	HOSTEL LOAI	D = 31.4KW	L	1	1		1				

FARIDK	OT HOSTEL							
Hostel Room 2X43	2X43=86	2X43=86	1X43=43	-	-	-	-	-
Hostel Room 1X3	1X3=3	1X3=3	1X3=3	-	-	-	-	-
Corrid or	-	6X2=12	-	-	-	-	-	-
washr oom		2X4=8	-	-	3X1.8=5 .4KW 3X1=3K W	-	-	-
Total	89X60=5.3 40KW	109X20=2. 180KW	46X60=2.7 60KW		8.4KW			
FARIDK	FARIDKOT HOSTEL LOAD =18.68KW							

HARGO	BIND HOSTEL							
Hostel Room 1X40	1X40=40	1X40=40	1X40=40	-	-	-	-	-
Hostel Room 2X16	2X16=32	2X16=32	1X16=16	-	-	-	-	-
Corrid or	-	4x2=8	-	-	-	-	-	-
washr oom	-	3x4=12	1x4=4	-	4x1.8=7. 2KW	-	-	-
Total	72X60=4.3 20	92X20=1.8 40	60X60=3.6 00		7.200K W	-	-	-
HARGO	HARGOBIND HOSTEL LOAD =16.96KW							

NEW JII	ND HOSTEL							
Hostel Room 1X25	2X47=94	2X47=94	1X47=47	-	-	-	-	-

Hostel Room	10	5	2	-	-	-	-	-
Corrid or	-	10	2	-	-	-	-	-
washr oom	-	10	-	-	2-6KW 2-3.6KW	-	1.4 KW	-
Total	104X60=6. 240KW	119X20=2. 380KW	51X60=3.0 60KW		9.6KW		1.4 KW	
NEW JIN	NEW JIND HOSTEL LOAD =22.68KW							

OLD JIN	D HOSTEL							
Hostel Room 1X25	1X25=25	1X25=25	1X25=25	-	-	-	-	-
Hostel Room 2X13	2X13=26	2X13=26	1X13=13	-	-	-	-	-
Corrid or	-	2X4=8	-	-	-	-	-	-
washr oom	-	5X2=10	-	-	-	-	-	-
Total	51X60=3.0 60KW	69X20=1.3 80KW	38X60=2.2 80KW	-	2X1=2K W (4KW)	-	1.4 KW	-
OLD JIN	OLD JIND HOSTEL LOAD =12.12KW							

WORKS	WORKSHOP							
WARA NDA	7X60=420 W	7X20=140 W	12(12X60 =720W)	5(5/3) 2KW	-	-	Wood Cutter Motor All 22HP	-
Total	420W	140W	720W	2KW	-	-	16.41 2KW	
WORKSHOP TOTAL LOAD =19.69KW								
MEES/C	MEES/CANTEEN/FOOD COURT							

	55X60=3.3 00KW	48X20=96 0W	24X60=1.4 40KW	21(21/2) 11KW	GEYSER 3X1800 =5400	1X25 00W	-	6X630=3 780W
Total	3.300KW	9.600KW	1.440KW	11KW	5.400K W	2.500 KW		3.78

MEES/CANTEEN/FOOD COURT LOAD =37.02KW

TOTAL LOAD =158KW

TOTAL GEYSER LOAD = 45.2KW

WORKSHOP LOAD = 19.69KW

MESS/CANTEEN/ FOOD COURT = 37.02KW

GIRLS HOSTEL

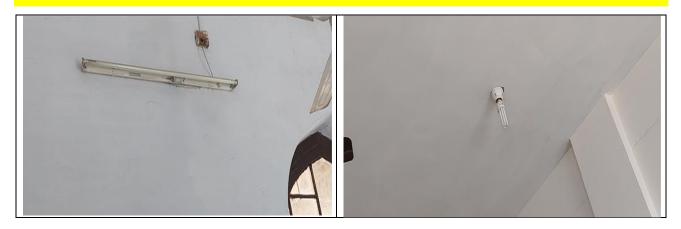
S.No.	Equipment Name	Туре	Quantity	Load (Km)
1	Geyser	19 Big(2KW)	19	38
		4 Small(3.2KW)	4	12.8
2	Motor	1 (7 H.P) 3 Phase	1	5.22
2	Motor	3 (1nd half H.P)	3	3.4
		2 (3 H.P)	2	4.8
3	Plug	5 Amp,	987	19.74
4	Exhaust Fan	2 Big	2	
		9 Small	9	0.668
5	Generator Set		1	140
6	RO Plant	Motor (1.36 H.P)	1	1
		Tullu Pump (0.37H.P)		
7	Air Conditioner	1 Ton	1	1.2
8	Computer Set		2	0.5
9	LED TV	42 Inch	3	0.18
10	Fan	Ceiling Fan	643	38.53

		wall Fan	12	0.72
11	Tube Rod	LED Set	100	2
		40 watt Rod Tube	636	25.44
12	Street Light	45 Watt	16	0.72
13	CCTV Camera		8	0.2
		Plug 15 Amp.	8	4
14	Canteen	Plug 5 Amp.	7	0.14
		Candy (450 Watt)	1	0.45
		Fridge (670 Watt)	1	0.67
		Plug 15 Amp.	7	4
15	Mess	Plug 5 Amp.	3	0.6
		Candy (1500 Watt)	1	1.5
			Total	306.478

SUBM	SUBMERSIBLE MOTORS						
		THREE PHASE (HP)No.	SINGLE PHASE (HP)No.				
1	MAIN GROUND	<mark>10X1</mark>					
		7.5X1					
2	ADM BLOCK		2.0				
3	GURDWARA SAHIB		1.5				
4	SIKH HISTORY		1.5X1				

From above load list, the observation is given below

Total no of CFL used in campus



SI.no	Wattage	Qty.
1	15	19
2	20	247

And total no of florescent tube used

SI.no	Wattage	Qty.
1	20	82
2	40	99
3	80	142

PHOTOS OF LIGHTS USED IN CAMPUS

Efficiency

If we talk about efficiency, CFL & LED are both significantly energy efficient. As for comparison the CFLS are 25% more efficient than incandescent light bulb & LEDs are roughly 75% more efficient.

LIFESPAN

The lifespan of LEDs is much longer than CFLs. As the

Average lifespan of CFLs is 10,000 Hrs.

Average lifespan of LEDs is 25,000 Hrs.

Hence from above we can calculate that the LEDs are almost 40% more efficient than CFLs.

LUMENS

The luminance of CFLs is 60 Lu/w. While the luminance of LEDs 72 Lu/w.

This means that around 10w of power, an LED will be just bright as a 18w of CFLs

CONCLUSION

From the above data we conclude that if we replace the CFL with the LED lights much electricity would be saved and the calculation is given below:

Total no. 15 watt CFLs used	= 19
Lumen per watt of CFL	= 60 Lu/w
So, Total Lumen of 15w CFL is	= 900 Lu
This luminance can be achieved by	v 12w of LED
Total no. of 20 watt CFLs used	= 247
Lumen per watt of CFL	= 60 Lu/w
So, Total Lumen of 20w CFL is	= 1200 Lu

This luminance can be achieved by 16w of LED

- So, 19 number of 15w CFL will consume almost 285w & same amount of 12w LED will consume 228w. Which is about 57w less
- Also 227 numbers of 20w CFL will consume about 4540w whereas same number of 16 LED will consume about 3632w. Which is about 908w less. Hence, we can save up to 965 watts of energy.

Now talking about the Fluorescent tube lights.

Luminance of Fluorescent tube light	=	80 Lu/w
Luminance of LED tube light	=	130 Lu/w

Total no. 20 w Fluorescent tube light used	= 82
Lumen per watt of Fluorescent tube light	= 80 Lu/w
So, Total Lumen of 20w Fluorescent tube light	= 1600 Lu
This luminance can be achieved by 12w of LED to	ube light

Total no. 40 w Fluorescent tube light used	= 99
Lumen per watt of Fluorescent tube light	= 80 Lu/w
So, Total Lumen of 40w Fluorescent tube light	= 3200 Lu
This luminance can be achieved by 25w of LED tu	ıbe light

Total no. 80 w Fluorescent tube light used	= 142
Lumen per watt of Fluorescent tube light	= 60 Lu/w
So, Total Lumen of 36w Fluorescent tube light	= 4800 Lu

This luminance can be achieved by 36w of LED tube light

So, 82 number of 20w Fluorescent tube light will consume almost 1640w & same amount of 12w LED tube light will consume 984w. Which is about <mark>656w</mark> less

Also 99 numbers of 40w Fluorescent tube light will consume about 3960w whereas same number of 25 LED tube light will consume about 2475w. Which is about 1485w less.

Also 142 numbers of 80w Fluorescent tubelight will consume about 11360w whereas same number of 36w LED tubelight will consume about 5112w. Which is about 6248w less

Hence, we can save up to 8386 watts of energy.

COSTING AND PAYBACK TIME FOR REPLA	CING CFL WITH LED
Cost of 12w LED light	= Rs. 160/p
Cost of 16w LED light	= Rs. 175/p
Cost of 19 12w LED light	=Rs. 3040
Cost of 247 16w LED light	=Rs. 43225
Total cost of replacing all the CFLs	= Rs.46265
Average use of lights per year	= 270 x 7 h = 1890 hr
From above value approx. 1kw of energy i	s saved
Hence, total energy saved per year =	1 x 1890 = 1890kwh

Saving in Rupees/year $1890 \times 6.63 = \text{Rs}.13000$

So, capital cost recovery time = (46265/13000) = 3 years Approx.

COSTING AND PAYBACK TIME FOR REPLACING FLUORESCENT TUBE LIGHT WITH LED TUBE LIGHT

Cost of 12w LED tube light	= Rs.130/p
Cost of 16w LED tube light	= Rs180/p
Cost of 36w LED tube light	= Rs247/p
Cost of 82 12w LED tube light	=Rs. 10660
Cost of 99 25w LED tube light	=Rs. 17820
Cost of 142 36w LED tube light	=Rs. 35074
Total cost of replacing all the tube light	= Rs.63550

tube light with LED tube light		
So, capital cost recovery time = ((63550/100245) = 6 Mor	nths Approx. by replacing the fluorescent
Saving in Rupees/year	= 15120 x 6.63	= Rs.100245
Hence, total energy saved per y	ear = $8 \times 1890 = 15$	120kwh
From above value approx. 9kw	of energy is saved	
Average use of lights per year	= 270	$0 \ge 7 h = 1890 hr$

Use of master switch outside each room

Installation of a master switch outside a room can make it easy for a person to switch off all the appliances of a room in case someone forgets to switch off while leaving the room. This helps in improving energy efficiency.

Use of motion sensors in toilets

Toilets have large potential of saving energy by use of automation tools. Motion sensors can be used there to automatically switch on the light when there is any movement and switch off the light Then there is no movement. This can greatly reduce the total load in toilets, each toilet has 4 tube light in average. There will be 2sensors required in a toilet.

Cost analysis of Installing Motion Sensors in Toilets:

•	Approximate total no of toilets in campus	=28
•	Approximate total no of light in toilets	= 112
•	Average power of the tube light	=12 w
•	Average no of motion sensor required	=28
•	Average reduction of usage per day by motion sensor	=4hr
Total	energy saved in toilets per year:	
•	Total energy consume by toilets	=12X112=1.3kwh
•	Energy consumed in normal condition per day	=1.3X7=9.4Kwh
•	Energy saved by motion sensor per day	=1.3X4=5.3kwh
•	Hence, energy saved by motion sensor per year	=5.3X270=1431kwh
•	Total amount saved per year	= Rs 7339
•	Cost of installation per motion sensor	= Rs 500
•	Total cost of installing motion sensor in toilets	= 500x28=Rs14000
٠	Capital cost recovery time	= 14000/7339 = 1.9 Yr

Hence the capital cost recovery time for installing motion sensor in toilets is 1 years. Hence, this is a highly recommended step to largely reduce the consumption in toilets.

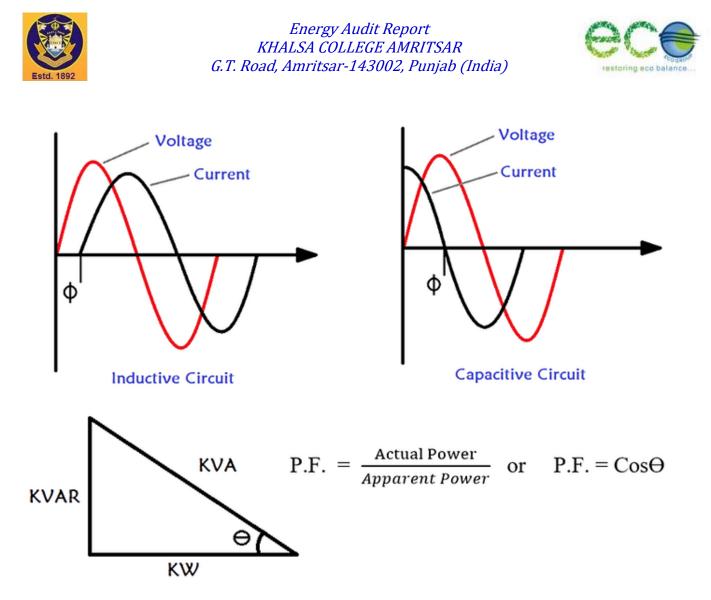
High investment/Long Term Replacement

Energy substitution (electrical energy to solar energy)

As we know in campus there is a huge consumption of electrical energy which is not economical so instead of using electrical energy, we switch to alternate energy source which is solar energy.

THREE PHASE MOTORS CALCULATIONS

"LOAD LIST FOR 3-PHASE MOTORS"



S.NO.	EQUIPMENT NAME	VOLT	TYPE OF	RATING	RATI	CURREN	ABSORB	POWER	LOAD	DIVERSITY	EFF.	TYPE	то	TAL					TYPE OF
		AGE	LOAD	IN HP	NG IN	T IN AMP	ED POWER	FACTOR	FACTO R	FACTOR		OF LOAD	кw	KVAR					STARTE R
1	SUBMERSIBLE PUMP 1	415	Motor/p UMp	7.5	5.6	12.2	4.2	0.75	0.70	1.0	0.85	С	4.9	4.4					DOL
2	SUBMERSIBLE PUMP 2	415	Motor/p UMp	10.0	7.5	16.3	5.6	0.75	0.70	1.0	0.85	С	6.6	5.8					DOL
3	WATER PUMP IN NABHA HOSTEL	415	Motor/p UMp	12.5	9.3	20.4	7.0	0.75	0.70	1.0	0.85	С	8.2	7.3					S/D
4	WATER PUMP IN GIRLS HOSTEL	415	Motor/p UMp	7.0	5.2	11.4	3.9	0.75	0.70	1.0	0.85	С	4.6	4.1					DOL
													24.4	21.5					
										1									
	MAXIMUM LOAD)	100%	OF COI	NUNU	S LOAD													
													KW	KVAR	KVA	COS¢	AMP	VOLTS	
								М	AXIMUN	I NORMAL R	UNNIN	g load	24.4	21.5	32.5	0.75	45.2	415	
											PEA	K LOAD	24.4	21.5	32.5	0.75	45.2	415	

The above table shows 3-phase motors calculations.

Understanding Power Factor and How It Affects Electricity Bills

Aside from safety and reliability, several other goals including efficiency should be pursued in the design and implementation of electrical systems. One of the measures of efficiency in an electrical system is the efficiency with which the system transforms the energy it receives into useful work. This efficiency is indicated by a component of electrical systems known as the Power Factor. The **power factor indicates how much power is actually being used to perform useful work** by a load and how much power it is "wasting". As trivial as its name sounds, it is one of the major factors behind high electricity bills, power failures and sometimes the imbalance in electrical networks.

To be able to properly describe power factor and its practical significance, it is important to refresh your memory about the different types of electrical loads and components of Power that exist.

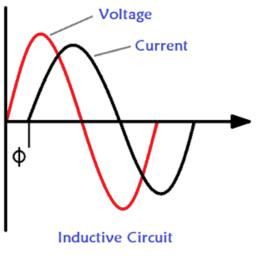
From basic electricity classes, electrical loads are basically of two types;

- 1. Resistive Loads
- 2. Reactive Loads

Resistive Loads

Resistive loads, as the name implies, are loads which are made up of **purely resistive elements**. For this kind of load (considering ideal conditions), all the power supplied to it are dissipated for useful work due to the fact that the **current is usually in phase with the voltage**. A good example of resistive loads includes incandescent light bulbs and batteries.

Resistive Circuit


Relationship between current and voltage for a Resistive Load

For this kind of loads, a power component known as Real/Active/working Power is associated. We will take a closer look at it in a bit.

Reactive loads

Reactive loads, on the other hand, are a little bit more complex. While they cause a drop in voltage and draw current from the source like resistive loads, they dissipate no useful power (no work was done).

Reactive loads can either be capacitive or Inductive. In inductive loads, the power drawn is used up in setting up magnetic flux without any direct work performed, while for capacitive loads, the power is used in charging the capacitor and not directly producing work. The power thus dissipated in reactive loads is referred to as **Reactive power**. Reactive loads are characterized by **the current leading (Capacitive loads) or lagging (Inductive loads) behind the voltage**, as such, a phase difference usually exists between the current and the voltage.

Relationship between Voltage and Current for an Inductive Load

The variations in these two types of load brought about the existence of three power components in electrical systems, namely;

- 1. Actual Power
- 2. Reactive Power
- 3. Apparent Power

To pick them one after the other;

Actual Power

This is the power associated with resistive loads. It is the power component dissipated to the performance of actual work in electrical systems. From heating to lighting, etc., It is expressed in **Watts (W)** (along with its multipliers, kilo, Mega, etc.) and symbolically represented by the letter P.

Reactive Power

This is the power associated with reactive loads. As a result of the delay between voltage and current in reactive loads (either capacitive or inductive), the energy dissipated, produces no work. It is referred to as reactive power and its unit is **Volt-Ampere Reactive (VAR)**.

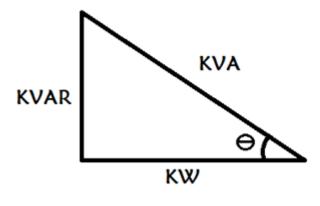
Apparent Power

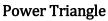
Typical electrical systems comprise of both resistive and inductive loads, think about your light bulbs and heaters for resistive loads, and equipment with motors, compressors, etc. as inductive loads. Thus in an electrical system, **Total Power is a combination of the actual and reactive power components**, this total power is called the Apparent Power and given by the sum of the Actual power and reactive power. Its unit is **volt-amps (VA)** and represented mathematically by the equation;

Apparent Power = Actual Power + Reactive power

This combination leading to the apparent power is what brings about the **power factor**.

In Ideal situations, the actual power dissipated in an electrical system is usually greater than the reactive power. The image below shows the **vector diagram** drawn using the three Power components.





Vector Diagram

Transforming the vector diagram, we get the triangle below; none as the power triangle.

By obtaining the cosine of the angle theta, we are able to decipher the efficiency of the system in using the power it receives for work. This efficiency evaluated as the ratio of the actual power to the apparent power is referred to as the **power factor** with values between 0 and 1. From the power triangle, according to the cosine rule (Adjacent over hypotenuse), the power factor can also be estimated as the ratio of actual power to the apparent power. mathematically;

P.F. = Actual Power / Apparent Power or P.F. =Cosθ

Putting this side by side with the equation for determining apparent power, it's easy to see that an increase in reactive power (presence of a high number of reactive loads), leads to an increase in apparent power and a larger value for angle theta, which ultimately results in a low power factor when its cosine (cos) is obtained. On the flip side, a reduction in reactive loads (reactive power) leads to an increased power factor, indicating high efficiency in systems with less reactive loads.

Importance of Power Factor

At very low power factor values, a large quantity of energy from the mains is wasted as a chunk of it will not be used for meaningful work due to the presence of more reactive loads indicated by the low power factor. This place a strain on the supply system as both the real power required by the load and the reactive power used to satisfy reactive loads will be drawn from the system to meet the requirements of the load.

This strain and "wastage" typically leads to huge electricity bills for consumers (especially industrial consumers) as utility companies calculate consumption in terms of apparent power, as such, they end up paying for power which was not used to achieve any "meaningful" work.

Even in situations where the power is being provided by the company's generators, money is wasted on bigger generators, larger sized cables, etc., required to provide power when a good number of it is just going to waste.

Power factor surcharge according to "Punjab State Electricity Regulatory Commission (P.S.E.R.C)"

According to para SXI.6 Power Factor Surcharge/Incentive

Consumers shall be required to maintain a monthly average power factor of 0.90. The monthly average power factor shall mean the ratio of total kWh to total kVAh supplied during the month. The ratio shall be rounded up to two decimal points.

According to para SXI. 6.1 Low Power Factor Surcharge

If the monthly average power factor falls below 0.90, the consumer shall pay on the energy charges a surcharge of 1% for each 0.01 decrease in the monthly average power factor below 0.90. The surcharge shall be 2% for each 0.01 decrease of monthly average power factor below 0.80.

According to para SXI. 6.2 Power Factor Incentive

If the monthly average power factor exceeds 0.90, incentive @ 0.25%, for each increase of 0.01 above 0.90 shall be allowed on the energy charges.

HOW TO SOLVE THIS PROBLEM?

To solve the above problem, we have to improve the power factor by installing the APFC panel which can maintain the power factor above 0.9 and helps in generating the power factor incentive, which causes the reduction in bill.

WHAT SHOULD BE THE CAPACITY OF APFC?

APFC Calculations

	APFC Calculations
Total running load	= 24.4kw
Correction factor	= tanØ ₁ – tanØ ₂
Actual power factor	$= \cos \phi_1 = 0.75$
So, Ø1	= cos ⁻¹ (0.75) = 41.4
Required power factor	$= \cos \phi_2 = 0.98$
So, Ø ₂	= cos ⁻¹ (0.98) = 11.5
Correction factor	= tan (41.4) – tan (11.5) = 0.68
Capacitor rating in KVAR	= Running KW x Correction factor
	= 24.4 x 0.68
	= 0.68
	= 20 KVAR Approx.
	teps is required and the steps are as follows:

Capacitor bank steps = (2.5 + 2.5 + 5 + 5 + 5) KVAR

Let us take an example by taking the bill

Let the bill amount	=	Rs. 20000
From load list avg. PF	=	0.75
Desired power factor	=	0.9
For 0.9 to 0.8 % cap. Charge	=	10 x 1% = 10%
For 0.8 to 0.75 % cap. Charge	=	5 x 2% = 10%
So, total cap. Charge would be	=	10+10% = 20%

If power factor is 0.9 then reduction in bill would be

20% of total bill amount	=	16000
So reduced bill amount	=	331980-265584= Rs. 4000

After using the APFC panel the average power factor will be 0.97.

So, total hike in power factor	=	7%
According to para SXI. 6.2 Power Factor Incentiv	e will b	e 0.25% for increase of 0.01
So, 7% of Rs. 16000 rebate will be	= Rs. 1	1400
Total bill amount	=Rs. 1	14600
Total saving after installing APFC panel	= Rs. 6	5000
Cost of installing APFC panel	= Rs.	32000 approx.

So, the payback time will approximately 6 months by using the APFC panel.

CONCLUSION AND RECOMMENDATIONS

- As per the climatic data of the location it is seen that the annual solar radiation of the area is 4.68 kw/m²/d, which is very good reading for solar power harvesting and by following this we can see that the energy benchmarks of the campus is 13kwh/m² and if only 10% of total kwh/m² is reduced i.e. 11.7kwh/m² the 156000 units of energy is saved in one year. This can be done by using the 60% of solar water heating system instead of electric geezers. Total cost of installation is Approx. Rs. 2,00,000 which can be recovered in less than 10 months.
- There are mainly 6 generators in the campus of different ratings which is shown in table-A above and also the carbon emission due to generator calculations are given above. According to our recommendations only by reducing the 20kw of power produced by generator with Solar inverters the GHG emission is reduced from 10.3 to 5.3. and the replacement of solar inverters would cost Rs. 2,00,000, which would be recovered back in 6 years.
- The department vise electrical load list of is given above and from the load list most of the lights source used by the campus is CFL's & fluorescent tube lights. According to our suggestion these lights should be replaced with LED & LED tubelights which can play the major role in saving the electricity which can be seen in above calculations. And it is observed that the replacement cost is Rs. 63550, which can be recovered in 6 months.
- The final suggestion is the use of APFC panel for the 3 phase pumps and motors. As it not only saves the loss of energy by increasing the power factor but the increased power factor will also cause the more reduction in electrical bill by giving the power factor incentives. The cost of installing APFC panel is Rs. 32000. Which can be recovered in Approx. 6 months.

About Eco Group (Consultant)

ABOUT ECO GROUP

Eco Group is North India's reputed environmental organization Headquartered in Mohali (Chandigarh) that offers consultancy and environmental-related turnkey solutions for overall pollution abatement and sustainable development. We are a professional engineering firm with National level consultancy approved by QCI/ NABET and Environmental and Mechanical testing laboratory approved by MoEF&CC, NABL (ISO/IEC 17025:2017) and state boards. Eco Group, established in 1998 has designed, engineered and executed more than 1,000 installations of Water, Domestic Sewage and Industrial Effluent Treatment Plants. With the help of our state-of-the-art technologies and apt infrastructure, we are proud to maintain an impeccable quality record, owing to our customer satisfaction levels. These treatment plants operate with the help of trained staff, including Sewage Treatment Plants (STPs), Effluent Treatment Plants (ETPs), Reverse Osmosis Plants (ROs), etc. In the last 20 years, we have undertaken several projects successfully and have created sustainable solutions to environmental issues.

Eco Group has two major business divisions as Eco Paryavaran Engineers & Consultants Pvt. Ltd. and Eco Paryavaran Laboratories & Consultants Pvt. Ltd. The former caters to consultancy and providing engineering solutions for environmental pollution whereas the latter pertains to the analytical and consultancy services in the field of lab testing and environmental studies. Eco Paryavaran is North India's leading supplier of pollution control equipment with world-class infrastructure.

Eco Paryavaran Laboratories is NABL (National Accreditation Board for Testing and Calibration Laboratories) accredited for ISO/IEC 17025:2017, approved by Ministry of Environment, Forest and Climate Change (MoEF&CC) & State Pollution Control Board (SPCBs) in the field of air, noise, wastes, water/wastewater and microbiological testing. Eco Paryavaran Laboratories & Consultants Pvt. Ltd. is also Government approved (ISO 9001:2015, ISO 14001:2015 and ISO 45001:2018) and National Accreditation Board for Education and Training (NABET).

Т	'eam	of	Exp	erts	for	the	Study	v
-		~		01.00			o on or	,

S. No.	Name of Expert	Role of Expert	ID of Expert
1.	Dr. Sandeep Garg (Ph. D. & ME in Env. Sc., BE in Civil)	 Managing Director NABL approved authorized signatory MoEF&CC approved govt. analyst NABET approved EIA Coordinator & Functional Area Expert Chairman IWE & Ex-Advisor, GMADA 	
2.	Dr. Rai Singh (Ph. D. & M. Sc. Env. Sc. P.G. Diploma in Industrial Safety, Health & Env.)	 Dy. General Manager (Technical & Environment) MoEF&CC approved Govt. Analyst; NABL approved authorized signatory NABET approved Environmental Expert Worked in CPCB (2001-12) as Research Scientist 	
4.	Dr. Simranjit Kaur (M.Sc. & M.Phill.; Ph.D. in Solid Waste Management)	 Deputy General Manager – EMS & Biological Lab Quality Manager – Analytical Division NABL Technical Assessor, NABL approved authorized signatory MoEF&CC approved govt. analyst NABET approved EIA Coordinator & Functional Area Expert 	
5.	Dr. Ajay Kumar	 Chief Technical Officer Quality Manager NABL approved authorized signatory 	
6.	Mr. Navjot Singh (BE Electrical & specialization in MEP)	Manager (Projects)	
7.	Mr. Umesh Kumar (M. Tech – Nanotech)	Technical Manager & Sr. Laboratory Analyst (Environment & Chemical) NABL approved authorized signatory	

Approvals of Eco Paryavaran Laboratory

Approvals of Eco Laboratory

NABET ACCREDITATION CERTIFICATE

2	Quality Council of Indi	а		
	National Accreditation Board	d for	NAE	BET
	Education & Training			6
1	Certificate of Accredita	tion		
U	Eco Laboratories and Consultants Pvt Ltd, I	Mohali		
	E 207, Phase VIII B, Sector 74, Industrial Area, SAS N	agar, Moha	di	
	rganization is accredited as Category-A under the QCI-NABET Scheme for Nization, Version 3: for preparing EIA-EMP reports in the following Sectors		on of EIA Coi	nsulta
i.			(as per)	
No	Sector Description	NABET	MoEFCC	Cat
1	Mining of minerals- opencast only	1	1 (b)	A
2	Metallurgical industries	8	3 (a)	В
3	Cement plants	9	3 (b)	A
4	Synthetic organic chemicals industry (dyes & dye intermediates; bulk drugs and intermediates excluding drug formulations; synthetic rubbers; basic organic chemicals, other synthetic organic chemicals and chemical intermediates)	21	5 (f)	A
5	Distilleries	22	5 (g)	A
6	Sugar Industry	25	5 (j)	В
7	Industrial estates/ parks/ complexes/ Areas, export processing zones (EPZs), Special economic zones (SEZs), Biotech parks, Leather complexes	31	7 (c)	A
8	Common Effluent Treatment Plants (CETPs)	36	7 (h)	В
9	Building and construction projects	38	8 (a)	B
10	Townships and Area development projects	39	8 (b)	В
ly O. e Ao tter o	Names of a pproved EIA Coordinators and Functional Area Experts are in 2,2021 posted on QCI-NABET website. Exreditation shall remain in farce subject to continued compliance to the terms and of accreditation bearing no. QO/NABET/ENV/ACD/21/1936 dated Sept 10, 2021. It the expiry date by Eco Laboratories and Consultants Pvt Ltd, Mahali following da	d conditions m The accreditat	entioned in QC tion needs to be	.)-NABI
(Director, NABET Certificate No.		Valid u	nto
	ted: Sept 10, 2021 NABET/EIA/2023/RA 0211		Dec 17, 2	11111
Dat			000 11,1	LUES

NABL ACCREDITATION CERTIFICATE

MOEF&CC ACCREDITATION CERTIFICATE

रजिस्ट्री सं० डो० एल=-33004/99

REGD, NO. D. L.-33004/99

असम्प्रारण

EXTRAORDINARY भाग II-खण्ड 3-उप-खण्ड (ii)

PART II-Section 3-Sub-section (ii)

प्राधिकार से प्रकाशित

PUBLISHED BY AUTHORITY

सं. 758] नई दिल्ली, बुधवार, फरवरी 28, 2018/फाल्गुन 9, 1939 No. 758] NEW DELHI, WEDNESDAY, FEBRUARY 28, 2018/PHALGUNA 9, 1939

पर्यावरण, बन और जसवायु परिवर्तन मंत्रालय

अधि पुचना

नई दिल्ली, 26 फरबरी, 2018

NOTIFICATION

New Delhi, the 26th February, 2018

S.O. 857(E).—In exercise of the powers conferred by clause (b) of sub-section (1) of section 12 and section 13 of the Environment (Protection) Act, 1986 (29 of 1986), read with rule 10 of the Environment (Protection) Rules, 1986, the Central Government hereby makes the following further amendments in the notification of the Government of India in the erstwhile Ministry of Environment and Forests, number S.O. 1174(E), dated the 18th July, 2007, namely: -

In the Table appended to the said notification, -

(i) for serial numbers 1,17,24,26,30,39,41,45,81,86,87,93,94,95,96 and 100 the entries relating thereto, the following serial numbers and entries shall be substituted, namely: -

S.No.	Name of the Laboratory	Name of the Govt. Analyst	Recognition with effect from and valid up to	
(1)	(2)	(3)	(4)	
"1	M/s Mantec Consultants Pvt. Ltd. D-36, Sector-VI, Noida-201301, Uttar Pradesh	 (i) Mr. Gaja Nand Mallick (ii) Dr. Vivek Dwivedi (iii) Mr. Sumit Verma 	26.02.2018 to 25.02.2023	
17	M/s Idma Laboratories Limited	(i) Mr. Ankush Aggarwal	26.02.2018	

	391, Industrial Area, Phase-1, Paunchkula-	(ii)Mr. Niranjan Dev Behl	10
	160019,Haryana	(iii) Dr. Rajendra Kumar Jain	25.02.2023
24	M/s Newcon Consultants & Laboratories Pvt. Ltd. 8 th K.M. Stone, Delhi Meerut Road, Morta (Opp. Manan Dham Mandir), Ghaziabad- 201003, Uttar Pradesh	 (i) Mr. Pankaj Gupta (ii) Mr. Amit Kumar Singh (iii) Mr. Intekhab Khan 	26.02.2018 to 25.02.2023
26	M/s Klean Laboratories & Research Pvt. Ltd. 402, Purushottam Plaza, Opp. Baner Telephone Exchange,Baner Road, Punc- 411045, Maharashtra	 (i) Mr. Vishwas Waman Kale (ii) Mr. Sanjay Kamalakar Mardikar (iii) Ms. Manjusha Gaikwad 	26.02.2018 to 25.02.2023
30	M/s Lawn Enviro Associates, "Lawn House" #184-C, Vengalrao Nagar, Hyderabad- 500038, Telangana	 (i) Mr. Devireddy Nagarujuna Reddy (ii) Ms. Chevula Anuradha (iii) Ms.Vangani Pallavi 	26.02.2018 to 25.02.2023
39	M/s Team Test House. (A Unit of Team Institute of Science & Technology Pvt. Ltd.) G-1-584, RIICO Industrial Area, Sitapura, Jaipur-302022, Rajasthan	 (i) Mrs. Kavita Mathur (ii) Mr. Kedar Nath Mukhopadh yay (iii) Mr. Rajesh Maheshwari 	26.02.2018 to 25.02.2023
41	M/s Envirochem Research & Test Labs Pvt. Ltd. HIG-79, Sector-E, Aliganj, Lucknow-226024, Uttar Pradesh	(i) Dr. Madan Mohan Agarwal(ii) Sh. Vivek Kumar Gupta(iii) Mrs. Saroj Singh	26.02.2018 to 25.02.2023
45	M/s Mineral Engineering Services 25/XXV, Club Road, Bellary-583103, Karnataka	 (i) Mr. M. Sachin Raju (ii) Mr. M.R. Durga Prasad (ili) Mr. A.D. Yashwanth Arun Murthy 	26.02.2018 to 25.02.2023
81	M/s Advanced Environmental Testing and Research Lab Pvt. Ltd. 63/1, Kailash Vihar, Near ITO, City Center-II, Gwalior-474011, Madhya Pradesh	 (i)Mr. Rajesh Jain (ii)Dr. Dinesh Kumar Uchchariya (iii) Mr. Arvind Kumar Sharma 	26.02.2018 to 25.02.2023
86	M/s Care Labs Plot No. 1, 3 ^{nl} Floor, Sai Sadan Complex, Shiva Ganga Colony, L.B. Nagar, Hyderabad- 500074, Telangana	 (i) Mr.K. Srinivasa Rao (ii) Ms. Gouthami Gangula (iii) Ms. P. Mamatha 	26.02.2018 to 25.02.2023
87	M/s Green Circle Inc. Green Empire, Anupushpam Habitat Centre, Nr. Yash Complex, Above Asix Bank Ltd., Gotri Main Road, Vadodara-390021, Gujarat	(i) Mr. Pradeep Joshi (ii) Mr. Ram Raghav (iii) Ms. Shital Jashvantsinh Parmar	26.02.2018 to 25.02.2023
93 oved	M/s Eco Laboratories & Consultants Pvt. Ltd., E-207, Industrial Area, Phase- VIII B, Sector-74, Mohali-160071, Punjab	 (i) Mr. Sandeep Garg (ii) Ms. Simranjit Kaur (iii) Dr. Deepika Thakur 	26.02.2018 to 25.02.2023
94	M/s Hubert Enviro Care Systems Pvt. Ltd. No. 18, 92 nd Street, Ashok Nagar, Chennai- 600083, Tamil Nadu	(i)Dr. J.R. Moses (ii)Dr. Rajkumar Samuel (iii) Mr. A.K. Natarajan	26.02.2018 to 25.02.2023
95	M/s Nawal Analytical Laboratories Plot No. 100, New SIDCO Industrial Estate, Sri Nagar, Hosur-635109, Tamil Nadu	(i) Mr. D.Balakrishnan	26.02.2018 to 25.02.2023

ISO 9001: 2015 Certificate

This is to Certify that Quality Management System of

ECO PARYAVARAN ENGINEERS & CONSULTANTS PRIVATE LIMITED

E-204 & 205, INDUSTRIAL AREA, PHASE VIII B (SECTOR-74), MOHALI-160071, PUNJAB, INDIA.

has been assessed and found to conform to the requirements of

for the following scope :

DESIGNING, MANUFACTURING, SUPPLY AND COMMISSIONING OF POLLUTION CONTROL EQUIPMENTS.

Certificate No Initial Registration Date Date of Expiry 1st Surve. Due

: 22IQJH70 : 21/04/2022 20/04/2025 21/03/2023

: 21/04/2022 Issuance Date

2nd Surve. Due : 21/03/2024

AQC MIDDLE EAST LLC

Head Office: Office No. 02, Ground Floor, Sharjah Media City, Sharjah, UAE. e-mail : info@aqcuorld.com, Key Location: A-60, Sector - 2, Noida, Uttar Praclesh, 201301, India. "Sidday of the Certificate is subject to succeeded completion of surveillance andle on or before of due date. (in case surveillance andle is not allowed to be conducted, this certificate shall be sugrended(withdrawat). Certificate Verification: From Re-duck the validity of certificate at http://www.aynordl.com/ativechents.ayn or www.ayourdl.com at Astive Cheme. Certificate is the property of AQC Middle Law LLC and shall be returned immediately when domanded

Management Systems Certification Body MSCB-119

ISO 14001: 2015 Certificate

egistration Certific<mark>ate</mark> of This is to Certify that Environmental Management System of ECO PARYAVARAN LABORATORIES & CONSULTANTS PRIVATE LIMITED E-207, INDUSTRIAL AREA, PHASE VIII B (SECTOR-74), MOHALI-160071, PUNJAB, INDIA. has been assessed and found to conform to the requirements of ISO 14001:2015 for the following scope : TESTING SERVICES IN BIOLOGICAL, CHEMICAL AND MECHANICAL CATEGORIES & EIA CONSULTANTS FOR PREPARING EIA/EMP REPORTS. Certificate No : 221EJS76 Initial Registration Date : 21/04/2022 **Issuance** Date : 21/04/2022 Date of Expiry : 20/04/2025 1st Surve. Due : 21/03/2023 2nd Surve. Due :21/03/2024 Director ACCREDITED Management Systems Certification Body MSCB-119 AQC MIDDLE EAST LLC Head Office: Office No. 02, Ground Floor, Sharjah Media City, Sharjah, UAE. e-mail: info@aqeworld.com, Key Location: A-60, Sector - 2, Noida, Uttar Pradesh, 201301, India. Wilding of the Certificate is subject to successful completion of surreillance and a on or before of due date. (In extersurreillance and a is not allowed to be conducted, this certificate shall be surpended/withdrawai). Certificate Verification: Please Re-check the validity of certificate at http://www.agonovid.com/activeclients.agon or <u>www.agonovid.com</u> at Active Clients. Certificate is the property of AQC Middle East LLC and shall be entered immediately when demanded

ISO 45001: 2018 Certificate Certifica**te** egistration This is to Certify that Occupational Health & Safety Management System of **ECO PARYAVARAN LABORATORIES &** CONSULTANTS PRIVATE LIMITED E-207, INDUSTRIAL AREA, PHASE VIII B (SECTOR-74), MOHALI-160071, PUNJAB, INDIA. has been assessed and found to conform to the requirements of **ISO 45001:2018** for the following scope : TESTING SERVICES IN BIOLOGICAL, CHEMICAL AND MECHANICAL CATEGORIES & EIA CONSULTANTS FOR PREPARING EIA/EMP REPORTS. Certificate No 22IOJA85 Initial Registration Date Issuance Date : 21/04/2022 21/04/2022 20/04/2025 Date of Expiry 1st Surve. Due 21/03/2023 2nd Surve. Due : 21/03/2024 Director ACCREDITED Management Systems Certification Body MSCB-119 AQC MIDDLE EAST LLC Head Office: Office No. 02, Ground Floor, Sharjah Media City, Sharjah, UAE. e-mail: info@aqcworld.com, Key Location: A-60, Sector - 2, Noida, Uttar Pradesh, 201301, India. Waladity of the Certificate is subject to matecified completion of surveillance andit on or before of due date. (in case surveillance andit is not allosed to be conducted, this certificate shall be suspended/withdranest). Certificate Verification: Plane Re-check the validity of compare a https://www.agroadd.com/ariverllenv.agrv.or.<u>www.agroadd.com.at.ActiveCilenv.</u> Certificate is the proyeery of AQE Middle East LLC and chall be returned immediately when domanded

Approvals of Eco Experts

NATURE SCIENCE FOUNDATION (A Unique Research and Development Centre for Society Improvement (ISO 9001:2015, 14001:2015, 45001:2018 & 50001:2018 Certified Organization SC & Ministry of MSME Registered Organisation) Coimbatore - 641 004, Tamil Nadu, India. [www.nsfonline.org.in] **Certificate of Lead Auditor Course** This is to certify that Dr. RAI SINGH, Department of Environment, Eco Paryavaran Laboratories and Consultants Pvt. Ltd., Mohali, Punjab has successfully completed a Lead Auditor Course on "Environment Management System, Green Campus Audit, Energy Audit and Hygiene Audit to Educational Institutions and Industrial Sectors" (Fourth Series) organized by the Nature Science Foundation, Coimbatore - 641 046, Tamil Nadu, India from 26th September 2022 to 30th September 2022. Motto of NSF 'Save the Nature to Save the Future' & 'Go Green to Save the Planet' B. Hythili Ashe Raa Chairman Certified ISO Auditor Certified Auditor IGBC AP Certified BEE Auditor Nature Science Foundation Environment Management System Indian Green Building Council Bureau of Energy Efficiency

Acknowledgement

Acknowledgement

Eco Paryavaran Laboratories and Consultants Pvt. Ltd. is thankful to the Management and the Principal/Director of Khalsa College Amritsar for entrusting processes of Energy Audit with us.

We thank all the participants of the auditing team especially students, faculty and non-teaching staff who took pain along with us to gather the data through survey.

We also thank the office staff who helped us during the document verification.

For Eco Paryavaran Laboratories and Consultants Pvt. Ltd.

Dr. Rai Singh

Brotories & Concellant Brotories & Concellant E-207 Hase VIII-B (sector-74) Mohali (Pb.) 160071

Authorized Signatory (NABET approved FAE for AQ, AP, NV & RH) Contact: +91-8054443192; Email: environment@ecoparyavaran.org

***** End of Report *****